Journal list menu
Evapotranspiration and crop coefficients for coffee production systems in Colombia using the eddy covariance method
Corresponding Author
Angela M. Castaño-Marín
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Correspondence
Angela M. Castaño-Marín, Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán (Cauca) 190002, Colombia
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorNéstor M. Riaño-Herrera
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Contribution: Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Writing - review & editing
Search for more papers by this authorGerardo A. Góez-Vinasco
Univ. Tecnológica de Pereira (UTP), Pereira, Risaralda, 660003 Colombia
Contribution: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorJuan C. García-López
Centro Nacional de Investigaciones de Café (Cenicafé), Chinchiná, Caldas, 170009 Colombia
Contribution: Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorApolinar Figueroa-Casas
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Search for more papers by this authorCorresponding Author
Angela M. Castaño-Marín
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Correspondence
Angela M. Castaño-Marín, Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán (Cauca) 190002, Colombia
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing - original draft, Writing - review & editing
Search for more papers by this authorNéstor M. Riaño-Herrera
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Contribution: Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Writing - review & editing
Search for more papers by this authorGerardo A. Góez-Vinasco
Univ. Tecnológica de Pereira (UTP), Pereira, Risaralda, 660003 Colombia
Contribution: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing
Search for more papers by this authorJuan C. García-López
Centro Nacional de Investigaciones de Café (Cenicafé), Chinchiná, Caldas, 170009 Colombia
Contribution: Formal analysis, Investigation, Methodology, Writing - original draft
Search for more papers by this authorApolinar Figueroa-Casas
Univ. del Cauca, Doctorado en Ciencias Ambientales, Grupo de Estudios Ambientales (GEA), Popayán, Cauca, 190002 Colombia
Search for more papers by this authorAssigned to Associate Editor David Clay.
Abstract
To optimize coffee (Coffea arabica L.) production in Colombia, adaptation strategies that improve water use must be developed. Therefore, the objective of this study was to determine evapotranspiration under standard conditions (ETc), reference evapotranspiration (ETo), and the crop coefficient (Kc) of coffee plants interplanted between maize (Zea mays L.) (coffee–maize) for the first 12 mo of growth and coffee grown without maize from 13 to 46 m after transplanting (MAT). In this study, ETc was measured using the eddy covariance method. The ETc of coffee–maize ranged from 4.17 to 4.71 mm d–1, while ETc of coffee–sun averaged 4.32 ± 0.07 mm d–1 between 13 and 24 MAT and 4.09 ± 0.03 mm d–1 between 25 and 43 MAT for coffee trees in the reproductive stage. The Kc was 0.87 for coffee plants between 0 and 12 MAT, 0.98 ± 0.01 between 13 and 24 MAT, and 0.97 ± 0.02 between 25 and 43 MAT. Maize intercropped between coffee trees produced an adapted microclimate for the first 2 mo, allowing energy used for evapotranspiration processes (latent heat flux) to be greater than energy used for air warming (sensible heat flux), although there was low soil water availability. Kc values are a foundation for optimizing coffee crop water use under climate and soil conditions for the intertropical Andean hillside region.
CONFLICT OF INTEREST
Authors declare that there are no conflicts of interest.
REFERENCES
- Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration (FAO irrigation and drainage paper 56). FAO.
- Antunes, R., Mantovani, E., Costa, L. C., Rena, A., & Alvarenga, A. (2000). Determinação da evapotranspiração da cultura do cafeeiro em cafeeiro em formação. In Irrigação: Simpósio de pesquisa dos cafés do Brasil (pp. 810—814). CONSÓRCIO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO DO CAFÉ.
- Arcila, J. (2007). Crecimiento y desarrollo de la planta de café. In Sistemas de producción de café en Colombia (pp. 22–60). Cenicafé. http://www.cenicafe.org/es/documents/LibroSistemasProduccionCapitulo2.pdf
- Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x
- Bermúdez- Flórez, L. N., Cartagena-Valenzuela, J. R., & Ramírez- Builes, V. H. (2018). Soil humidity and evapotranspiration under three coffee (Coffea arabica L.) planting densities at Naranjal experimental station (Chinchiná, Caldas, Colombia). Acta Agronómica, 67(3), 402–413. https://doi.org/10.15446/acag.v67n3.67377
10.15446/acag.v67n3.67377 Google Scholar
- Black, C., & Ong, C. (2000). Utilisation of light and water in tropical agriculture. Agricultural and Forest Meteorology, 104(1), 25–47. https://doi.org/10.1016/S0168-1923(00)00145-3
- Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics. Springer. https://doi.org/10.1007/978-1-4612-1626-1
10.1007/978-1-4612-1626-1 Google Scholar
- Castano Marín, A. M., Riaño Herrera, N. M., Peña Quiñones, A. J., Ramirez Builes, V. H., Valencia Salazar, A., Figueroa Casas, A., & Góez Vinasco, G. A. (2017). Energy, water vapor and carbon fluxes in Andean agroecosystems: Conceptualization and methodological standardization. Acta Agronómica, 66(1), 27–34. https://doi.org/10.15446/acag.v66n1.52543
10.15446/acag.v66n1.52543 Google Scholar
- Centro Nacional de Investigaciones de Café (1991–2011). Anuario Meteorológico Cafetero [1990–2010]. Cenicafé. https://www.cenicafe.org/es/index.php/nuestras_publicaciones/anuarios_meteorologicos/
- Cisneros Zayas, E., Rey García, R., Martínez Varona, R., López Seijas, T., & González Robaina, F. (2015). Evapotranspiración y coeficientes de cultivo para el cafeto en la provincia de Pinar del Río. Revista Ciencias Técnicas Agropecuarias, 24(2), 23–30. http://scielo.sld.cu/pdf/rcta/v24n2/rcta04215.pdf
- da Silva, A. L., Roveratti, R., Reichardt, K., Santos Bacchi, O. O., Timm, L. C., Bruno, I. P., Oliveira, J. C. M., & Dourado Neto, D. (2006). Variability of water balance components in a coffee crop in Brazil. Scientia Agricola, 63(2), 105–114. https://doi.org/10.1590/s0103-90162006000200001
- Delgado, R., Castro, L., Cabrera de Bisbal, E., San Vicente, F., Mújica, M. de, J. M., Canache, S., Navarro, L., & Noguera, I. (2008). Evaluación de algunas características del sistema radical del maíz (híbrido INIA 68) cultivado bajo labranza mínima y convencionalen un suelo de Maracay, Venezuela. Agronomía Tropical, 58(4), 427–438.
- de Oliveira, P. M., da Silva, A. M., & Castro Neto, P. (2003). Estimativa da evapotranspiração e do coeficiente de cultura do cafeeiro recepado (Coffea arabica L.). 273 Irriga, 8(3), 273–282. https://doi.org/10.15809/irriga.2003v8n3p273-282
10.15809/irriga.2003v8n3p273?282 Google Scholar
- de Oliveira Costa, J., Coelho, R. D., Wolff, W., José, J. V., Folegatti, M. V., & de Barros Ferraz, S. F. (2019). Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Scientia Agricola, 76(2), 93–101. https://doi.org/10.1590/1678-992x-2017-0158
- Eichelmann, E., Wagner-Riddle, C., Warland, J., Deen, B., & Voroney, P. (2016). Comparison of carbon budget, evapotranspiration, and albedo effect between the biofuel crops switchgrass and corn. Agriculture, Ecosystems and Environment, 231, 271–282. https://doi.org/10.1016/j.agee.2016.07.007
- Flumignan, D. L., de Faria, R. T., & Prete, C. E. C. (2011). Evapotranspiration components and dual crop coefficients of coffee trees during crop production. Agricultural Water Management, 98(5), 791–800. https://doi.org/10.1016/j.agwat.2010.12.002
- Foken, T., Leuning, R., Oncley, S. R., Mauder, M., & Aubinet, M. (2012). Corrections and data quality control. In A practical guide to measurement and data analysis (pp. 85–131). Springer. https://doi.org/10.1007/978-94-007-2351-1
10.1007/978-94-007-2351-1_4 Google Scholar
- Franco, J. G., King, S. R., & Volder, A. (2018). Component crop physiology and water use efficiency in response to intercropping. European Journal of Agronomy, 93, 27–39. https://doi.org/10.1016/j.eja.2017.11.005
- Gutiérrez, M. V., & Meinzer, F. C. (1994). Estimating water use and irrigation requirements of coffee in Hawaii. Journal of the American Society for Horticultural Science, 119(3), 652–657. https://doi.org/10.21273/JASHS.119.3.652
- García, H. A., & Campos, C. H. (2012). Comparación de tres métodos para determinar densidad aparente y solidez en tres suelos franco arenosos de sabana. Revista Científica UDO Agrícola, 12(4), 861–872).
- Jaramillo Robledo, A. (2006). Evapotranspiración de referencia en la Región Andina de Colombia. Revista Cenicafé, 57(4), 282–298. https://www.cenicafe.org/es/publications/arc057(04)288-298.pdf
- Jaramillo-Robledo, Á. (2018). La variabilidad climática en el trópico. In El Clima de la caficultura en Colombia (1st ed., pp. 26–44). Cenicafé. https://www.cenicafe.org/es/publications/libroClima.pdf
10.38141/cenbook-0031 Google Scholar
- Khodadadi Dehkordi, D. (2020). The effect of different irrigation treatments on yield and water productivity of Arachis Hypogaea L. under semi-arid conditions in Iran. Irrigation and Drainage, 69(4), 646–657. https://doi.org/10.1002/ird.2461
- Lee, X., Finnigan, J., & Paw, U. K. T. (2004). Coordinate systems and flux bias error. In X. Lee, W. Massman, & B. Law (Eds.), Handbook of Micrometeorology (pp. 33–66). Springer. https://doi.org/10.1007/1-4020-2265-4_3
- Lee, X., Massman, W., & Law, B. (2005). Handbook of Micrometeorology: A guide for surface flux measurement and analysis). Springer. https://doi.org/10.1007/1-4020-2265-4
10.1007/1-4020-2265-4 Google Scholar
- Li, Y., Ma, L., Wu, P., Zhao, X., Chen, X., & Gao, X. (2020). Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Field Crops Research, 248(January 2019), 107656. https://doi.org/10.1016/j.fcr.2019.107656
- Marin, F. R., Angelocci, L. R., Righi, E. Z., & Sentelhas, P. C. (2005). Evapotranspiration and irrigation requirements of a coffee plantation in southern Brazil. Experimental Agriculture, 41(2), 187–197. https://doi.org/10.1017/S0014479704002480
- Meyers, T. (2004). An assessment of storage terms in the surface energy balance of maize and soybean. Agricultural and Forest Meteorology, 125(1–2), 105–115. https://doi.org/10.1016/j.agrformet.2004.03.001
- Moncrieff, J., Clement, R., Finnigan, J., & Meyers, T. (2004). Averaging, detrending, and filtering of eddy covariance time series. In X. Lee, W. Massman, & B. Law (Eds.), Handbook of Micrometeorology (pp. 7–31). Springer. https://doi.org/10.1007/1-4020-2265-4_2
- Morales-Rosales, E. J., Alberto Escalante-Estrada, J., Tijerina-Chávez, L., Volke-Haller, V., & Sosa-Montes, E. (2006). Biomass, yield, and water and radiation use efficiency in the agrosystem of sunflower and common bean. Terra Latinomericana, 24(1), 55–64. https://www.redalyc.org/pdf/573/57311494007.pdf
- National Federation of Coffee Growers of Colombia (FNC) (2021). Statistics. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/
- Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., & Yakir, D. (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique : Algorithms and uncertainty estimation. Biogeosciences, 3, 571–583. https://doi.org/10.5194/bg-3-571-2006
- Pereira, A. R., Camargo, M. B. P. D.e, & Villa Nova, N. A. (2012). Coffee crop coefficient for precision irrigation based on leaf area index. Bragantia, 70(4), 946–951. https://doi.org/10.1590/S0006-87052011000400030
- Ramírez Builes, V. H., & Jaramillo Robledo, Á. (2009). Balances de energía asociados a los cambios de cobertura en la zona andina colombiana. Cenicafé, 60(3), 199–209. https://www.cenicafe.org/es/publications/arc060%2803%29199-209.pdf
- Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11, 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
- Sato, F. A., da Silva, A. M., Coelho, G., da Silva, A. C., & de Carvalho, L. G. (2007). Coeficiente de cultura (Kc) do cafeeiro (Coffea arabica L.) no período de outono-inverno na região de Lavras - MG. Engenharia Agrícola, 27(2), 383–391. https://doi.org/10.1590/S0100-69162007000300007
10.1590/S0100?69162007000300007 Google Scholar
- Wagle, P., & Kakani, V. G. (2014). Seasonal variability in net ecosystem carbon dioxide exchange over a young Switchgrass stand. GCB Bioenergy, 6(4), 339–350. https://doi.org/10.1111/gcbb.12049
- Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106(447), 85–100. https://doi.org/10.1002/qj.49710644707
- Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., … Verma, S. (2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113(1–4), 223–243. https://doi.org/10.1016/S0168-1923(02)00109-0
- Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T., Martin, T. A., Matamala, R., Baldocchi, D., Bohrer, G., Dragoni, D., & Scott, R. (2012). Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment, 124, 581–595. https://doi.org/10.1016/j.rse.2012.06.004
- Zhao, P., Kang, S., Li, S., Ding, R., Tong, L., & Du, T. (2018). Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture. Agricultural Water Management, 197, 19–33. https://doi.org/10.1016/j.agwat.2017.11.004
- Zinivand, N., Khodadadi-Dehkordi, D., Kashkuli, H. A., Asareh, A., & Egdernezhad, A. (2020). Assessment of superabsorbent polymer effect on water use efficiency of plant under water deficit conditions. Tecnologia y Ciencias Del Agua, 11(1), 315–341. https://doi.org/10.24850/j-tyca-2020-01-08