Journal list menu
Using deciduous trees as bioindicators of trace element deposition in a small urban watershed, Indianapolis, IN, USA
Katerina Mazari
Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132
Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408
Search for more papers by this authorCorresponding Author
Gabriel M. Filippelli
Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132
Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408
Correspondence
Gabriel M. Filippelli, Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN 46202-5132
Email: [email protected]
Search for more papers by this authorKaterina Mazari
Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132
Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408
Search for more papers by this authorCorresponding Author
Gabriel M. Filippelli
Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN, 46202-5132
Environmental Resilient Institute, 717 E 8th St., Bloomington, IN, 47408
Correspondence
Gabriel M. Filippelli, Dep. of Earth Sciences, 723 W. Michigan St., Indiana Univ.–Purdue Univ. Indianapolis (IUPUI), Indianapolis, IN 46202-5132
Email: [email protected]
Search for more papers by this authorAssigned to Associate Editor Zhongqi Cheng.
Abstract
Annual and multiyear records of trace element deposition are difficult to develop using monitoring systems but have proven feasible using plant material in several settings. Here, we used material from several tree species (Populus deltoides W. Bartram ex Marshall, Platanus occidentalis L., and Ginkgo biloba L.) to detect atmospheric deposition of trace elements (Cd, Cu, Pb, and Zn) in six localities along a transect from near-urban to far-urban in southeastern Indianapolis, IN, and one control site. We captured soil (legacy footprint), bark (multiannual record), and leaves (seasonal record) across a broad swath of the urban landscape and using a multi-metal approach. Tree bark, leaf, and proximal soil samples were collected and analyzed for their trace element content. The highest trace metal concentrations occurred at the near-urban sites, with particularly high Cu and Pb values. The highest Zn values were found at one of the far-urban sites, which is located near a large brownfield that was a former coal and coke storage and processing facility. No correlation was found between soil trace element composition and that of bark and leaves, perhaps indicating a disconnect between legacy inputs recorded in soils and current inputs recorded in the biological materials. Overall, the tree species analyzed served well as trace element bioindicators, although less so for G. biloba, and thus this approach is promising for further understanding the role that airborne pollution and deposition play in urban watersheds.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
jeq220009-sup-0001-SuppMat.docx180.8 KB | The supplemental material contains comparative figures of each element in both tree bark and leaf tissue from all examined sites. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Adriano, D. C. (1986). Trace elements in terrestrial environments ( 1st ed.). New York: Springer.
- Adriano, D. C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability, and risks of metals ( 2nd ed.). New York: Springer. https://doi.org/10.1007/978-0-387-21510-5
10.1007/978-0-387-21510-5 Google Scholar
- Al-Alawi, M. M., & Mandiwana, K. L. (2007). The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. Journal of Hazardous Materials, 148, 43–46. https://doi.org/10.1016/j.jhazmat.2007.02.001
- Alves, E. S., Moura, B. B., & Domingos, M. (2008). Structural analysis of Tillandsia usneoides L. exposed to air pollutants on São Paulo City- Brazil. Water, Air, and Soil Pollution, 189, 61–68. https://doi.org/10.1007/s11270-007-9555-1
- Aničić, M., Spasić, T., Tomašević, M., Rajšić, S., & Tasić, M. (2011). Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators, 11, 824–830. https://doi.org/10.1016/j.ecolind.2010.10.009
- Balasooriya, B. L. W.K., Samson, R., Mbikwa, F., Vitharana, U. W.A., Boeckx, P., & Van Meirvenne, M. (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristic. Environmental and Experimental Botany, 65, 386–394. https://doi.org/10.1016/j.envexpbot.2008.11.009
- Barber, J. L., Thomas, G. O., Kerstiens, G., & Jones, K. C. (2004). Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs. Environmental Pollution, 128, 99–138. https://doi.org/10.1016/j.envpol.2003.08.024
- Bargagli, R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin, Heidelberg, New York: Springer.
- Baycu, G., Tolunay, D., Özden, H., & Günebakan, S. (2006). Ecophysiological and seasonal variations in Cd, Pb, Zn and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental Pollution, 143, 545–554. https://doi.org/10.1016/j.envpol.2005.10.050
- Bellis, D., Cox, A. J., Staton, I., McLeod, C. W., & Statke, K. (2001). Mapping airborne lead contamination near a metal smelter in Derbyshire UK: Spatial variation of Pb concentration and ‘enrichment factor’ for tree bark. Journal of Environmental Monitoring, 3, 512–514. https://doi.org/10.1039/b106835k
- Caselles, J., Colliga, C., & Zornoza, P. (2002). Evaluation of trace element pollution from vehicle emissions in petunia plants. Water Air Soil Pollution, 136, 1–9. https://doi.org/10.1023/A:1015229714374
- Chambers, L. G., Chin, Y-P., Filippelli, G. M., Gardner, C., Herndon, E. M., et al. (2016). Developing the scientific framework for urban geochemistry. Applied Geochemistry, 67, 1–20. https://doi.org/10.1016/j.apgeochem.2016.01.005
- Councell, T. B., Duckenfield, K. U., Landa, E. R., & Callender, E. (2004). Tire-wear particles as a source of zinc to the environment. Environmental Science & Technology, 38, 4206–4214. https://doi.org/10.1021/es034631f
- Dollar, N. L., Souch, C., Filippelli, G. M., & Mastalerz, M. (2001). Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore. Environmental Science & Technology, 35, 3608–3618. https://doi.org/10.1021/es0105764
- Doğanlar, Z. B., & Atmaca, M. (2011). Influence of airborne pollution on Cd, Zn, Pb, Cu and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water Air Soil Pollution, 214, 509–523. https://doi.org/10.1007/s11270-010-0442-9
- El-Hasan, T., Al-Omari, H., Jiries, A., & Al-Nasir, F. (2002). Cypress tree (Cupressus sempervirens L.) bark as indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International, 28, 513–519. https://doi.org/10.1016/s0160-4120(02)00079-x
- Esposito, F., Memoli, V., & Di Natale, G. (2019). Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb. Chemosphere, 218, 340–346. https://doi.org/10.1016/j.chemosphere.2018.11.133
- Fernandéz Espinoza, A. J., & Rossini Oliva, S. (2006). The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere, 62, 1665–1672. https://doi.org/10.1016/j.chemosphere.2005.06.038
- Filippelli, G. M., & Laidlaw, M. (2010). The elephant in the playground: Confronting lead- contaminated soils as an important source of lead burdens to urban population. Perspectives in Biology and Medicine, 53, 31–45. https://doi.org/10.1353/pbm.0.0136
- Filippelli, G. M., Laidlaw, M., Latimer, J. C., & Raftis, R. (2005). Urban lead poisoning and medical geology: An unfinished story. GSA Today, 15, 4–11.
10.1130/1052-5173(2005)015<4:ULPAMG>2.0.CO;2 Google Scholar
- Filippelli, G. M., Risch, M., Laidlaw, M. A.S., Nichols, D. E., & Crewe, J. (2015). Geochemical legacies and the future health of cities: A tale of two neurotoxins in urban soils. Elementa, 3. https://doi.org/10.12952/journal.elementa.000059
- Galuszka, A. (2005). The chemistry of soil, rocks, and plant bioindicators in three ecosystems of the Holy Cross Mountains, Poland. Environmental Monitoring and Assessment, 110, 55–70. https://doi.org/10.1007/s10661-005-6290-1
- Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: A review. Environmental Science and Pollution Research, 22, 2491–2504. https://doi.org/10.1007/s11356-014-3696-8
- Hatcher, C. L., & Filippelli, G. M. (2011). Mercury cycling in an urbanized watershed: The influence of wind and regional subwatershed geometry in central Indiana, USA. Water Air Soil Pollution, 219, 251–261. https://doi.org/10.1007/s11270-010-0703-7
- Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper and nickel in agriculture soils of the United States of America. Journal of Environmental Quality, 22, 335–348. https://doi.org/10.2134/jeq1993.00472425002200020015x
- Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants ( 3rd ed.). Boca Raton, FL: CRC Press.
- Kardel, F., Wuyts, K., De Wael, K., & Samson, R. (2018). Biomonitoring of atmospheric particulate pollution via chemical composition and magnetic properties of roadside tree leaves. Environmental Science and Pollution Research, 25, 25994–26004. https://doi.org/10.1007/s11356-018-2592-z
10.1007/s11356-018-2592-z Google Scholar
- Kharkan, J., Hossein Sayadi, M., & Resa Rezaei, M. (2019). Investigation of heavy metals accumulation in the soil and pine trees. Environmental Health Engineering and Management, 6, 17–25.
- Laidlaw, M. A., & Filippelli, G. M. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: A review and new directions. Applied Geochemistry, 23, 2021–2039. https://doi.org/10.1016/j.apgeochem.2008.05.009
- Laidlaw, M. A. S., Filippelli, G. M., Brown, S., Paz-Ferreiro, J., Reichman, S., et al. (2017). Case studies and evidence-based approaches to addressing urban soil lead contamination. Applied Geochemistry, 83, 14–30. https://doi.org/10.1016/j.apgeochem.2017.02.015
- Laidlaw, M. A. S., Filippelli, G. M., Sadler, R. C., Gonzales, C. R., Ball, A. S., & Mielke, H. W. (2016). Children's blood lead seasonality in Flint, Michigan (USA), and soil-sourced lead hazard risks. International Journal of Environmental Research and Public Health, 13(4). https://doi.org/10.3390/ijerph13040358
- Laidlaw, M. A. S., Mielke, H. W., Filippelli, G. M., Johnson, D. L., & Gonzales, C. R. (2005). Seasonality and children's blood lead levels: Developing a predictive model using climatic variables and blood lead data from Indianapolis, Indiana, Syracuse, New York and New Orleans, Louisiana (USA). Environmental Health Perspectives, 113, 793–800. https://doi.org/10.1289/ehp.7759
- Laidlaw, M. A. S., Zahran, S., Mielke, H. W., Taylor, M. P., & Filippelli, M. G. (2012). Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburg, USA. Atmospheric Environment, 49, 302–310. https://doi.org/10.1016/j.atmosenv.2011.11.030
- McKeague, J. A., & Wolynetz, M. S. (1980). Background levels of minor elements in some Canadian soils. Geoderma, 24, 299–307. https://doi.org/10.1016/0016-7061(80)90057-9
- Missouri Botanical Garden. (2018). Plant finder. Missouri Botanical Garden. Retrieved from http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode
- Morrison, D., Lin, Q., Wiehe, S., Liu, G., Rosenman, M., et al. (2013). Spatial relationships between lead sources and children's blood lead levels in the urban center of Indianapolis (USA). Environmental Geochemistry and Health, 35, 171–183. https://doi.org/10.1007/s10653-012-9474-y
- Pandit, C.M., Filippelli, G.M., & Li, L. 2010. Estimation of heavy metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing. 31, 4111–4123. https://doi.org/10.1080/01431160903229200
- Patrick, G. J., & Farmer, J. G. (2007). A lead isotopic assessment of tree bark as biomonitor of contemporary atmospheric lead. Science of the Total Environment, 388, 343–356. https://doi.org/10.1016/j.scitotenv.2007.07.047
- Perkins, S., Filippelli, G. M., & Souch, C. (2000). Airborne trace metal contamination of wetland sediments at Indiana Dunes National Lakeshore. Water Air Soil Pollution, 12, 231–260. https://doi.org/10.1023/A:1005254916966
- R Core Team (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
- Rodriguez, J. H., Wannaz, E. D., Salazar, M. J., Pignata, M. L., Fangmeier, A., & Franzaring, J. (2012). Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the three foliage of Eucalyptus rostrate, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina. Atmospheric Environment, 55, 35–42. https://doi.org/10.1016/j.atmosenv.2012.03.026
- Rossini Oliva, S., & Mingorance, M. D. (2006). Assessment of airborne heavy metal pollution by aboveground plant parts. Chemosphere, 65, 177–182. https://doi.org/10.1016/j.chemosphere.2006.03.003
- Samecka-Cymerman, A., Stankiewitcz, A., Kolon, K., & Kempers, A. J. (2009). Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environmental Pollution, 157, 2061–2065. https://doi.org/10.1016/j.envpol.2009.02.021
- Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicators of heavy metal pollution in three European cities. Environmental Pollution, 159, 3560–3570. https://doi.org/10.1016/j.envpol.2011.08.008
- Schulz, H., Popp, P., Huhn, G., Stärk, H-J., & Schüürmann, G. (1999). Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Science of the Total Environment, 232, 49–58. https://doi.org/10.1016/s0048-9697(99)00109-6
- Serbula, S. M., Miljkovich, D. Dj., Kovacevic, R. M., & Ilic, A. A. (2012). Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicology and Environmental Safety, 76, 209–214. https://doi.org/10.1016/j.ecoenv.2011.10.009
- Soudek, P., Kinderman, P., Maršík, P., Petrová, Š., & Vanĕk, T. (2012). Biomonitoring of air pollution in Prague using tree leaves. Journal of Food, Agriculture and Environment, 10, 810–817.
- Todorović, D., Popović, D., Ajtić, J., & Nikolić, J. (2013). Leaves of higher plants as biomonitors of radionuclides (137Cs, 40K, 210Pb and 7Be) in urban air. Environmental Science and Pollution Research, 20, 525–532. https://doi.org/10.1007/s11356-012-0940-y
- Tomašević, M., Aničić, M., Jovanović, L. j., Perić-Grujić, A., & Ristić, M. (2011). Deciduous tree leaves in trace elements biomonitoring: A contributor to methodology. Ecological Indicators, 11, 1689–1695. https://doi.org/10.1016/j.ecolind.2011.04.017
10.1016/j.ecolind.2011.04.017 Google Scholar
- Tomašević, M., Vukmirović, Z., Rajšić, S., Tasić, M., & Stevanović, B. (2008). Contribution to biomonitoring of some trace metals by deciduous tree leaves in urban areas. Environmental Monitoring and Assessment, 137, 393–401. https://doi.org/10.1007/s10661-007-9775-2
- Ugolini, F., Tognetti, R., Raschi, A., & Bacci, L. (2013). Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban Forestry and Urban Greening, 12, 576–584. https://doi.org/10.1016/j.ufug.2013.05.007
- Zahran, S., Laidlaw, M. A. S., McElmurry, S., Filippelli, G., & Taylor, M. (2013). Linking source and effect: Re-suspended soil lead, air lead, and children's blood lead levels in Detroit, Michigan. Environmental Science & Technology, 47, 2839–2845. https://doi.org/10.1021/es303854c