Journal list menu
Carbon dioxide flush as a soil health indicator related to soil properties and crop yields
Corresponding Author
Upendra M. Sainju
Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT, 59270 USA
Correspondence
Upendra M. Sainju, Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT 59270, USA.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Project administration, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorDaniel Liptzin
Soil Health Institute, Morrisville, NC, 27560 USA
Contribution: Data curation, Funding acquisition, Investigation, Methodology, Resources, Validation
Search for more papers by this authorSadikshya M. Dangi
Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT, 59270 USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Upendra M. Sainju
Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT, 59270 USA
Correspondence
Upendra M. Sainju, Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT 59270, USA.
Email: [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Project administration, Supervision, Writing - original draft, Writing - review & editing
Search for more papers by this authorDaniel Liptzin
Soil Health Institute, Morrisville, NC, 27560 USA
Contribution: Data curation, Funding acquisition, Investigation, Methodology, Resources, Validation
Search for more papers by this authorSadikshya M. Dangi
Northern Plains Agricultural Research Laboratory, USDA-ARS, Sidney, MT, 59270 USA
Contribution: Data curation, Formal analysis, Investigation, Writing - review & editing
Search for more papers by this authorAssigned to Associate Editor Rachel Cook.
Abstract
Carbon dioxide flush after rewetting of dried soils has been recommended as a promising soil health indicator, but it has not been related to most soil properties and crop yields. We evaluated the effect of cropping systems and N fertilization on CO2 flushes at 1- (1dC) and 4-d incubations (4dC) after rewetting of dried soils and related to 54 soil physical, chemical, and biological properties and annualized crop yields in two long-term experimental sites in eastern Montana (USA). Treatments included till and no-till spring wheat (Triticum aestiveum L.), pea (Pisum sativum L.), and fallow rotations with and without N fertilization. Carbon dioxide flushes were lower in till crop–fallow than in no-till continuous cropping systems at both sites. The 1dC was correlated to 5 soil physical, 7 chemical, and 12 biological properties, and 4dC was correlated to 9 physical, 8 chemical, and 11 biological properties in Froid. In Sidney, 1dC was correlated to 10 physical, 13 chemical, and 9 biological properties, and 4dC was correlated to 7 physical, 11 chemical, and 2 biological properties (1–8 moderately, 18–21 strongly, and 1–3 very strongly related). Carbon dioxide flushes were also related to mean annualized crop yields in both sites, except for the relationship between 4dC and crop yield in Sidney. Because of its stronger relationship with soil properties and crop yields, 1dC after rewetting of dried soils determined by using the infrared gas analyzer can be used as a simple, rapid, reliable, and inexpensive indicator of measuring soil health in dryland cropping systems.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- Aase, J. K., & Pikul, J. L., Jr. (1995). Crop and soil response to long-term tillage practices in the northern Great Plains. Agronomy Journal, 87, 652–656. https://doi.org/10.2134/agronj1995.00021962008700040008x
- Acosta-Martinez, V., & Tabatabai, M. A. (2011). Phosphorus cycle enzymes. In R. P. Dick (Ed.), Methods of soil enzymology (pp. 161–183). SSSA. https://doi.org/10.2136/sssabookser9.c8
- Al-Kaisi, M. M., Kruse, M. L., & Sawyer, J. E. (2008). Effect of nitrogen fertilizer application on growing season carbon dioxide emission in a corn-soybean rotation. Journal of Environmental Quality, 37, 325–332. https://doi.org/10.2134/jeq2007.0240
- Allen, D. E., Singh, B. P., & Dalal, R. C. (2011). Soil health indicators under climate change: A review of current knowledge. In B. P. Singh, A. L. Cowie , & K. Y. Chan (Eds.), Soil health and climate change (pp. 25–45). Springer.
- Alves de Castro Lopes, A., Gomes de Sousa, D. M., Chaer, G. M., Bueno dos Reis Junior, F., Goedert, W. J., & de Carvalho Mendes, I. (2013). Interpretation of microbial soil health indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, 77, 461–472. https://doi.org/10.2136/sssaj2012.0191
- Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal, 68, 1945–1962. https://doi.org/10.2136/sssaj2004.1945
- Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis. Part. 1. Physical and mineralogical methods ( 2nd ed., pp. 363–382). ASA and SSSA. https://doi.org/10.2136/sssabookser5.1.2ed.c13
- Bundy, L. G., & Meisinger, J. J. (1994). Nitrogen availability indices. In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, & A. Wollum (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 951–984). SSSA. https://doi.org/10.2136/sssabookser5.2.c41
- Cassel, D. K., & Nielsen, D. R. (1986). Field capacity and available water capacity. In A. Klute (Ed.), Methods of soil analysis. Part. 1. Physical and mineralogical methods ( 2nd ed., pp. 901–926). ASA and SSSA. https://doi.org/10.2136/sssabookser5.1.2ed.c36
- Castellanos, J. Z., & Pratt, P. F. (1981). Mineralization of manure nitrogen: Correlation with laboratory indices. Soil Science Society of America Journal, 45, 354–357. https://doi.org/10.2136/sssaj1981.03615995004500020025x
- Congreves, K. A., Hayes, A., Verhallen, E. A., & Van Eerd, L. L. (2015). Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil and Tillage Research, 152, 17–28. https://doi.org/10.1016/j.still.2015.03.012
- Deng, S., & Popova, I. (2011). Carbohydrate hydrolases. In R. P. Dick (Ed.), Methods of soil enzymology (pp. 185–209). SSSA. https://doi.org/10.2136/sssabookser9.c9
- Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran (Ed.), Defining soil quality for a sustainable environment (Spec. Publ. 35, pp. 3–21). ASA and SSSA. https://doi.org/10.2136/sssaspecpub35.c1
- Franzluebbers, A. J. (1999). Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Applied Soil Ecology, 11, 91–101. https://doi.org/10.1016/S0929-1393(98)00128-0
- Franzluebbers, A. J. (2016). Should soil testing services measure soil biological activity? Agricultural and Environmental Letters, 1, 150009. https://doi.org/10.2134/ael2015.11.0009
- Franzluebbers, A. J., Wright, S. F., & Stuedemann, J. A. (2000). Soil aggregation and glomalin under pastures in the southern Piedmont, USA. Soil Science Society of America Journal, 64, 1018–1026. https://doi.org/10.2136/sssaj2000.6431018x
- Fajardo, M., McBratney, A. B., Field, D. J., & Minasny, B. (2016). Soil slaking assessment using image recognition. Soil and Tillage Research, 163, 119–123. https://doi.org/10.1016/j.still.2016.05.018
- Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part. 1. Physical and mineralogical methods ( 2nd ed., pp. 383–411). ASA and SSSA. https://doi.org/10.2136/sssabookser5.1.2ed.c15
- Haney, R. L., Brinton, W. F., & Evans, E. (2008). Soil CO2 respiration: Comparison of chemical titration, CO2 IRGA analysis, and Solvitta gel system. Renewable Agriculture and Food Systems, 23, 171–176. https://doi.org/10.1017/S174217050800224X
- Haney, R. L., Franzluebbers, A. J., Jin, V. L., Johnson, M. - V., Haney, E. B., White, M. J., & Harmel, R. D. (2012). Soil organic C: N vs. water extractable C:N. Open Journal of Soil Science, 2, 269–274. https://doi.org/10.4236/ojss.2012.23032
- Haney, R. L., Haney, E. B., Hossner, L. R., & Arnold, J. G. (2010). Modifications in the new soil extractant H3A-1: A multinutrient extractant. Communication in Soil Science and Plant Analysis, 4, 1513–1523. https://doi.org/10.1080/00103624.2010.482173
- Haney, R. L., Hons, F. M., Sanderson, M. A., & Franzluebbers, A. J. (2001). A rapid procedure for estimating nitrogen mineralization in manured soil. Biology and Fertility of Soils, 33, 100–104. https://doi.org/10.1007/s003740000294
- Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., & Parkin, G. W. (2008). Soil density and porosity. In M.R. Carter, & E. G. Gregorich (Eds.), Soil sampling and methods of analysis ( 2nd ed., pp. 743–759). Taylor and Francis.
- Harris, R. F. (1981). Effect of water potential on microbial growth and activity. In J. F. Parr, W. R. Gardner, & R. E. Wilding (Eds.), Water potential relations in soil microbiology (Vol. 9, pp. 23–95). SSSA. https://doi.org/10.2136/sssaspecpub9.c2
- Hattori, T., Hattori, R., & Mclaren, A. D. (1976). The physical environment in the soil microbiology. An attempt to extend principals of microbiology to soil microorganisms. Critical Review in Microbiology, 4, 423–461. https://doi.org/10.3109/10408417609102305
- Idowu, O. J., Van Es, H. M., Abawi, G. S., Wolfe, D. W., Ball, J. I., Gugino, B. K., Moebius, B. N., Schindelbeck, R. R., & Bilgili, A. V. (2008). Farmer-oriented assessment of soil quality using field, laboratory, and UNIR spectroscopy methods. Plant and Soil, 307, 243–253 https://doi.org/10.1007/s11104-007-9521-0
- Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61, 4–10. https://doi.org/10.2136/sssaj1997.03615995006100010001x
- Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis. Part. 1. Physical and mineralogical methods ( 2nd ed., pp. 425–442). ASA and SSSA. https://doi.org/10.2136/sssabookser5.1.2ed.c17
- Klose, S., Bilen, S., Tabatabai, M. A., & Dick, W. A. (2011). Sulfur cycle enzymes. In R. P. Dick (Ed.), Methods of soil enzymology (pp. 125–151). SSSA. https://doi.org/10.2136/sssabookser9.c7
- Liebig, M. A., Jones, A. J., Doran, J. W., & Mielke, L. N. (1995). Potential soil respiration and relationship to soil properties in ridge tillage. Soil Science Society of America Journal, 59, 1430–1435. https://doi.org/10.2136/sssaj1995.03615995005900050032x
- Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models. SAS Institute.
- Mac Bean, G., Kitchen, N. R., Veum, K. S., Cambarato, J. J., Ferguson, R. B., Fernandez, F. G., Franzen, D. W., Laboski, C. A. N., Nafziger, E. D., Sawyer, J. E., & Yost, M. (2020). Relating four-day soil respiration to corn nitrogen fertilizer needs across 49 U.S. Midwest fields. Soil Science Society of America Journal, 84, 1195–1208. https://doi.org/10.1002/saj2.20091
- Miller, R. O., Gavlak, R., & Horneck, D. (2013). Saturated paste extract for calcium, magnesium, sodium, and SAR. In Soil, plant, and water methods for the western region ( 4th ed., pp. 21–22). Colorado State University.
- Moebius-Clune, B., Moebius-Clune, D. Gugino, B., Idowu, O., Schindlebeck, R., Ristow, A. J., & Abawi, G. S. (2017). Comprehensive assessment of soil health: The Cornell Framework ( 3rd ed.). Cornell University.
- Mosier, A. R., Halvorson, A. D., Reule, C. A., & Liu, X. J. (2006). Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality, 35, 1584–1598. https://doi.org/10.2134/jeq2005.0232
- Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods ( 2nd ed., pp. 961–1010). ASA and SSSA. https://doi.org/10.2136/sssabookser5.3.c34
- Paul, E. A., & van Veen, J. A. (1978). The use of tracers to determine the dynamic nature of organic matter. In Transactions of the 11th International Congress of Soil Science (pp. 61–102). University of Alberta.
- Reynolds, W. D., & Topp, G. C. (2008). Soil water desorption and imbibition: Tension and pressure techniques. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis ( 2nd ed., pp. 981–987). Taylor and Francis.
- Reynolds, W. D., & Elrick, D. E. (1990). Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal, 54, 1233–1241. https://doi.org/10.2136/sssaj1990.03615995005400050006x
- Roper, W. R., Osmond, D. L., Hertman, J. L., Wagger, M. G., & Reberg-Horton, S. C. (2017). Soil health indicators do not differentiate among agronomic management systems in North Carolina. Soil Science Society of America Journal, 81, 827–843. https://doi.org/10.2136/sssaj2016.12.0400
- Sainju, U. M., & Alasinrin, S. Y. (2020). Changes in soil chemical properties and crop yields with long-term cropping system and nitrogen fertilization. Agrosystems, Geosciences, and Environment, 2020, 3e20019. https://doi.org/10.1002/age2.20019
- Sainju, U. M., Caesar-Tonthat, T., & Caesar, A. (2012). Comparison of soil carbon dioxide flux measurements by static and portable chambers in various management practices. Soil and Tillage Research, 118, 123–131. https://doi.org/10.1016/j.still.2011.10.020
- Sainju, U. M., Caesar-Tonthat, T., Lenssen, A. W., & Barsotti, J. L. (2012). Dryland soil greenhouse gas emissions affected by cropping sequence and nitrogen fertilization. Soil Science Society of America Journal, 76, 1741–1757. https://doi.org/10.2136/sssaj2012.0076
- Sainju, U. M., Jabro, J. D., & Caesar-Tonthat, T. (2010). Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emissions and carbon content. Journal of Environmental Quality, 39, 935–945. https://doi.org/10.2134/jeq2009.0223
- Schindelbeck, R. R., Moebius-Clune, B. N., Moebius-Clune, D. J., Kuntz, K. S., & van Es, H. M. (2016). Cornell University comprehensive soil health laboratory standard operating procedure. Cornell University.
- Sikora, F. S., & Moore, K. (2014). Soil test methods from the southeastern United States Southern Cooperative Series (Bulletin 419). Clemson University.
- Tabatabai, M. A. (1994). Soil enzymes. In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, & A. Wollum (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 775–833). SSSA. https://doi.org/10.2136/sssabookser5.2.c37
- Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3. Chemical methods ( 2nd ed., pp. 474–490). ASA and SSSA. https://doi.org/10.2136/sssabookser5.3.c16
- Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677. https://doi.org/10.1038/nature01014
- Topp, G. C., Galganev, Y. T., Ball, B. C., & Carter, M. R. (1993). Soil water desorption curves. In M. R. Carter (Ed.), Soil sampling and methods of analysis. Lewis Publishers.
- Torbert, H. A., & Wood, C. W. (1992). Effect of soil compaction and water-filled pore space on soil microbial activity and nitrogen losses. Communication in Soil Science and Plant Analysis, 23, 1321–1331. https://doi.org/10.1080/00103629209368668
- van Es, H. M., & Karlen, D. L. (2019). Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Science Society of America Journal, 83, 721–733. https://doi.org/10.2136/sssaj2018.09.0338
- Wang, W. J., Dalal, R. C., Moody, P. W., & Smith, C. J. (2003). Relationships of soil respiration to microbial biomass, substrate availability, and clay content. Soil Biology and Biochemistry, 35, 273–284. https://doi.org/10.1016/S0038-0717(02)00274-2
- Weil, R., Islam, K. R., Stine, M. A., Gruver, J. V., & Samson-Liebig, S. E. (2003). Estimating active carbon for soil quality assessment: A simple method for laboratory and field use. American Journal of Alternative Agriculture, 18, 3–17.
- Yost, M. A., Veum, K. S., Kitchen, N. R., Sawyer, J. E., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski, C. A., & Nafziger, E. D. (2018). Evaluation of the Haney Soil Health tool for corn nitrogen recommendations across eight Midwest states. Journal of Soil and Water Conservation, 73, 587–592. https://doi.org/10.2489/jswc.73.5.587
- Zibilske, L. (1994). Carbon mineralization. In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, & A. Wollum (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical properties (pp. 835–863). SSSA. https://doi.org/10.2136/sssabookser5.2.c38