Journal list menu
Lentil Variation in Phenology and Yield Evaluated with a Model
Michel Edmond Ghanem
International Center for Agricultural Research in the Dry Areas (ICARDA), North-Africa Platform, Rabat, Morocco
Search for more papers by this authorHélène Marrou
UMR System, Montpellier SupAgro, Montpellier, France
Search for more papers by this authorAfshin Soltani
Agronomy Group, Gorgan Univ. of Agricultural Sciences and Natural Resources, Gorgan, Iran
Search for more papers by this authorShiv Kumar
International Center for Agricultural Research in the Dry Areas (ICARDA), North-Africa Platform, Rabat, Morocco
Search for more papers by this authorCorresponding Author
Thomas R. Sinclair
Dep. of Crop Science, North Carolina State Univ., Raleigh, NC, 27695
Corresponding author ([email protected]).
Search for more papers by this authorMichel Edmond Ghanem
International Center for Agricultural Research in the Dry Areas (ICARDA), North-Africa Platform, Rabat, Morocco
Search for more papers by this authorHélène Marrou
UMR System, Montpellier SupAgro, Montpellier, France
Search for more papers by this authorAfshin Soltani
Agronomy Group, Gorgan Univ. of Agricultural Sciences and Natural Resources, Gorgan, Iran
Search for more papers by this authorShiv Kumar
International Center for Agricultural Research in the Dry Areas (ICARDA), North-Africa Platform, Rabat, Morocco
Search for more papers by this authorCorresponding Author
Thomas R. Sinclair
Dep. of Crop Science, North Carolina State Univ., Raleigh, NC, 27695
Corresponding author ([email protected]).
Search for more papers by this authorAll rights reserved
Abstract
Lentil (Lens culinaris Medik.) is a major crop highly valued in the food and nutritional security of millions of people, as well as a rotation crop. Lentil is grown in areas facing many environmental constraints from low moisture availability and high temperatures to winter cold at high elevations. The use of an appropriate and robust crop model can offer mechanistic bases for exploring and extrapolating the impact of a given plant trait or crop management across a range of environments. First, we used the generic SSM-Legumes model to develop a simple and transparent lentil model. The SSM-Legumes model had a robust predictive capability to assess variation in the phenological development and yield of lentil in three locations in the Middle East (Lebanon and Syria) with large differences in rainfall. The agreement between simulated and observed days to flowering or maturity and yield showed the robustness of the model in predicting lentil growth and yield. Second, we incorporated into SSM-legumes a submodel allowing a more realistic accounting of crop survival at very low soil water content, resulting in more realistic predictions of lentil growth and yield. Third, we used the model to test the potential for increasing lentil yields by the retention of crop residue on the soil surface to decrease soil evaporation. Our results showed yield increases of up to 25% in all three locations from the retention of previous crop residues.
REFERENCES
- Aggrawal, P.K., N. Kalra, S. Chander, and H. Patha. 2006. InfoCrop: A dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments: I. Model description. Agric. Syst. 89: 1–25. doi:https://doi.org/10.1016/j.agsy.2005.08.001,
- Amini, R., and M. Alami-Milani. 2013. Effect of mulching on soil, canopy and leaf temperature of lentil (Lens culinaris Medick.). Int. J. Farming Allied Sci. 2: 797–802.
- Amir, J., and T.R. Sinclair. 1991. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Res. 28: 47–58. doi:https://doi.org/10.1016/0378-4290(91)90073-5,
- Andrews, M., B.A. McKenzie, A. Joyce, and M.E. Andrews. 2001. The potential of lentil (Lens culinaris) as a grain legume crop in the UK: An assessment based on a crop growth model. Ann. Appl. Biol. 139: 293–300. doi:https://doi.org/10.1111/j.1744-7348.2001.tb00142.x,
- Ayaz, S., B.A. McKenzie, G.D. Hill, and D.L. McNeil. 2004. Variability in yield of four grain legume species in a subhumid temperate environment. II. Yield components. J. Agric. Sci. 142: 21–28. doi:https://doi.org/10.1017/S0021859604004113,
- Azam, M., A. Hussain, S.A. Wajid, and M. Maqsood. 2002. Effect of sowing date, irrigation and plant densities on radiation interception and its utilization efficiency in lentils. Int. J. Agric. Biol. 2: 217–219.
- Bagheri, A., K. Azizi, S. Heidari, and M.S. Hasanvandi. 2013. Regression modeling of growth indices of lentil affected by bio-fertilizers with superabsorbent polymer. Int. J. Farming Allied Sci. 19: 712–719.
- Battikhi, A.M., and A.A. Suleiman. 1999. Effect of tillage system on soil strength and bulk density of Vertisols. J. Agron. Crop Sci. 182: 285–290. doi:https://doi.org/10.1046/j.1439-037x.1999.00319.x,
10.1046/j.1439-037x.1999.00319.x Google Scholar
- Baumhardt, R.L., and O.R. Jones. 2002. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil Tillage Res. 68: 71–82. doi:https://doi.org/10.1016/S0167-1987(02)00097-1,
- Bejiga, G., S. Tsegaye, A. Tullu, and W. Erskine. 1996. Quantitative evaluation of Ethiopian landraces of lentil (Lens culinaris). Genet. Resour. Crop Evol. 43: 293–301. doi:https://doi.org/10.1007/BF00132948,
- Borlaug, N.E., and C.R. Dowswell. 2005. Feeding a world of ten billion people: A 21st century challenge. In: R. Tuberosa et al., editors, In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution: Proceedings of the International Congress Bologna, Italy. 27–31 May 2003. Avenue Media, Bologna. p. 3–24.
- Challinor, A.J., T.R. Wheeler, P.Q. Craufurd, J.L. Slingo, and D.I.F. Grimes. 2004. Design and optimisation of a large-area process-based model for annual crops. Agric. For. Meteorol. 124: 99–120. doi:https://doi.org/10.1016/j.agrformet.2004.01.002,
- Chapman, S.C., M. Cooper, D. Podlich, and G.L. Hammer. 2003. Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron. J. 95: 99–113. doi:https://doi.org/10.2134/agronj2003.0099,
- Chen, W., H.C. Sharma, and F.J. Muehlbauer. 2011. Crop protection compendium for chickpea and lentil diseases and pests. Am. Phytopathol. Soc., St Paul, MN.
- Chenu, K., S.C. Chapman, F. Tardieu, G. McLean, C. Welcker, and G.L. Hammer. 2009. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A “gene-to-phenotype” modeling approach. Genetics 183: 1507–1523. doi:https://doi.org/10.1534/genetics.109.105429,
- Chenu, K., M. Cooper, G.L. Hammer, K.L. Mathews, M.F. Dreccer, and S.C. Chapman. 2011. Environment characterization as an aid to wheat improvement: Interpreting genotype–environment interactions by modelling water-deficit patterns in north-eastern Australia. J. Exp. Bot. 62: 1743–1755. doi:https://doi.org/10.1093/jxb/erq459,
- Dennett, M.D., and K.H.M. Ishag. 1998. Use of the expolinear growth model to analyse the growth of faba bean, peas and lentils at three densities: Predictive use of the model. Ann. Bot. 82: 507–512. doi:https://doi.org/10.1006/anbo.1998.0709,
- Devi, M.J., T.R. Sinclair, S.E. Beebe, and I.M. Rao. 2013. Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 364: 29–37. doi:https://doi.org/10.1007/s11104-012-1330-4,
- Erskine, W. 1983. Relationship between the yield of seed and straw in lentil. Field Crops Res. 7: 115–121. doi:https://doi.org/10.1016/0378-4290(83)90016-3,
- Erskine, W. 1996. Seed-size effects on lentil (Lens culinaris) yield potential and adaptation to temperature and rainfall in West Asia. J. Agric. Sci. 126: 335–341. doi:https://doi.org/10.1017/S002185960007489X,
- Erskine, W. 2009. Global production, supply and demand. In: W. Erskine et al., editors, The lentil: Botany, production and uses. CAB Int., Wallingford, UK. p. 4–12.
- Erskine, W., J. Diekmann, P. Jegatheeswaran, A. Salkini, M.C. Saxena, A. Ghanaim, and F. Elashkar. 1991. Evaluation of lentil harvest systems for different sowing methods and cultivars in Syria. J. Agric. Sci. 117: 333–338. doi:https://doi.org/10.1017/S0021859600067071,
- Erskine, W., and El Ashkar, F.. 1993. Rainfall and temperature effects of lentil (Lens culinaris) seed yield in Mediterranean environments. J. Agric. Sci. 121: 347–354. doi:https://doi.org/10.1017/S0021859600085543,
- Erskine, W., and W.J. Goodrich. 1991. Variability in lentil growth habit. Crop Sci. 31: 1040–1044. doi:https://doi.org/10.2135/cropsci1991.0011183X003100040039x,
10.2135/cropsci1991.0011183X003100040039x Google Scholar
- Erskine, W., S. Rihawe, and B.S. Capper. 1990. Variation in lentil straw quality. Anim. Feed Sci. Technol. 28: 61–69. doi:https://doi.org/10.1016/0377-8401(90)90068-J,
- Erskine, W., A. Sarker, and S. Kumar. 2011. Crops that feed the world: 3. Investing in lentil improvement toward a food secure world. Food Secur. 3: 127–139. doi:https://doi.org/10.1007/s12571-011-0124-5,
- Erskine, W., M. Tufail, A. Russell, M.C. Tyagi, M.M. Rahman, and M.C. Saxena. 1994. Current and future strategies in breeding lentil for resistance to abiotic and biotic stresses. Euphytica 73: 127–135. doi:https://doi.org/10.1007/BF00027189,
- Hamdi, A., W. Erskine, and P. Gates. 1992. Adaptation of lentil seed yield to varying moisture supply. Crop Sci. 32: 987–990. doi:https://doi.org/10.2135/cropsci1992.0011183X003200040031x,
10.2135/cropsci1992.0011183X003200040031x Google Scholar
- Hammer, G.L., vanOosterom, E., G. McLean, S.C. Chapman, I. Broad, P. Harland, and R.C. Muchow. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61: 2185–2202. doi:https://doi.org/10.1093/jxb/erq095,
- Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, and L.A. Hunt et al. 2003. The DSSAT cropping system model. Eur. J. Agron. 18: 235–265. doi:https://doi.org/10.1016/S1161-0301(02)00107-7,
- Keating, O., B.A. Carberry, G.L. Hammer, M.E. Probert, M.J. Robertson, and D. Holzworth et al. 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18: 267–288. doi:https://doi.org/10.1016/S1161-0301(02)00108-9,
- Kholova, J., G. McLean, V. Vadez, P. Craufurd, and G.L. Hammer. 2013. Drought stress characterization of post-rainy season (rabi) sorghum in India. Field Crops Res. 141: 38–46. doi:https://doi.org/10.1016/j.fcr.2012.10.020,
- Kumar, S., and M. Ali. 2006. GE interaction and its breeding implications in pulses. Botanica 56: 31–36.
- Leport, L., N.C. Turner, R.J. French, D. Tennant, B.D. Thomson, and K.H.M. Siddique. 1998. Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. Eur. J. Agron. 9: 295–303. doi:https://doi.org/10.1016/S1161-0301(98)00042-2,
- Ludwig, F., and S. Asseng. 2010. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agric. Syst. 103: 127–136. doi:https://doi.org/10.1016/j.agsy.2009.11.001,
- Marrou, H., T.R. Sinclair, and R. Metral. 2014. Assessment of irrigation scenarios to improve performances of lingot bean (Phaseolus vulgaris) in the south west of France. Eur. J. Agron. 59: 22–28. doi:https://doi.org/10.1016/j.eja.2014.05.006,
- Matus, A., D.A. Derksen, F.L. Walley, H.A. Loeppky, and vanKessel, C.. 1997. The influence of tillage and crop rotation on nitrogen fixation in lentil and pea. Can. J. Plant Sci. 77: 197–200. doi:https://doi.org/10.4141/P96-078,
- McKenzie, B.A., and M. Andrews. 2010. Modelling climate change effects on legume crops: Lenmod, a case study. In: S.S. Yadav et al., editors, Climate change and management of cool season grain legume crops. Springer, Dordrecht, the Netherlands. p. 11–20.
- McKenzie, B.A., and G.D. Hill. 1989. Environmental control of lentil (Lens culinaris) crop development. J. Agric. Sci. 113: 67–72. doi:https://doi.org/10.1017/S0021859600084628,
- McMaster, C.S., J.W. White, W.W. Wilhelm, P.D. Jamieson, P.M. Baenziger, A. Weiss, and J.R. Porter. 2009. Simulating crop phenological responses to water deficits. In: L.R. Ahuja et al., editors, Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes. Adv. Agric. Syst. Model. Ser. 1. ASA, CSSA, and SSSA, Madison, WI. p. 277–300. doi:https://doi.org/10.2134/advagricsystmodel1.c10
- Messina, C., G.L. Hammer, Z. Dong, D. Podlich, and M. Cooper. 2009. Modelling crop improvement in a G × E × M framework via gene–trait–phenotype relationships. In: V.O. Sadras D. Calderini, editors, Crop Physiology: Applications for Genetic Improvement and Agronomy. Academic Press, Burlington, MA. p. 235–265.
- Mondal, M.M.A., A.B. Puteh, M.A. Malek, S. Roy, and M.R. Yusop. 2013. Contribution of morpho-physiological traits on yield of lentil (Lens culinaris Medik). Aust. J. Crop Sci. 7: 1167–1172.
- Neitsch, S.L., J.G. Arnold, J.R. Kiniry, J.R. Williams, and K.W. King. 2002. Soil and Water Assessment Tool: Theoretical documentation and user's manual, Version 2000. Texas A&M Univ., College Station.
- O'Leary, G.J., and D.J.A. Connor. 1996. Simulation model of the wheat crop in response to water and nitrogen supply: 1. Model construction. Agric. Syst. 52: 1–29. doi:https://doi.org/10.1016/0308-521X(96)00003-0,
- Pala, M., H.C. Harris, J. Ryan, R. Makboul, and S. Dozom. 2000. Tillage systems and stubble management in a Mediterranean-type environment in relation to crop yield and soil moisture. Exp. Agric. 36: 223–242. doi:https://doi.org/10.1017/S0014479700002052,
- Ritchie, J.T., A. Gerakis, and A. Suleiman. 1999. Simple model to estimate field-measured soil water limits. Trans. ASAE 42: 1609–1614. doi:https://doi.org/10.13031/2013.13326,
- Roberts, E.H., R.J. Summerfield, F.J. Muehlbauer, and R.W. Short. 1986. Flowering in lentil (Lens culinaris Medic.): The duration of the photoperiodic inductive phase as a function of accumulated daylength above the critical photoperiod. Ann. Bot. 58: 235–248.
- Robertson, M.J., P.S. Carberry, N.I. Huth, J.E. Turpin, M.E. Probert, and P.L. Poulton et al. 2002. Simulation of growth and development of diverse legume species in APSIM. Aust. J. Agric. Res. 53: 429–446. doi:https://doi.org/10.1071/AR01106,
- Ruíz-Nogueira, B., K.J. Boote, and F. Sau. 2001. Calibration and use of CROPGRO-Soybean model for improving soybean management under rainfed conditions. Agric. Syst. 68: 151–173. doi:https://doi.org/10.1016/S0308-521X(01)00008-7,
- Ryan, J., S. Masri, S. Garabet, J. Diekmann, and H. Habib. 1997. Soils of ICARDA's agricultural experiment stations and sites: Climate, classification, physical and chemical properties, and land use. Tech. Bull. ICARDA, Aleppo, Syria.
- Ryan, J., M. Singh, M. Pala, R. Makhboul, S. Masri, H.C. Harris, and R. Sommer. 2010. Crop sequences, nitrogen fertilizer and grazing intensity in relation to wheat yields in rainfed systems. J. Agric. Sci. 148: 205–216. doi:https://doi.org/10.1017/S0021859609990566,
- Ryan, J., R. Sommer, and H. Ibrikci. 2012. Fertilizer best management practices: A perspective from the dryland West Asia–North Africa region. J. Agron. Crop Sci. 198: 57–67. doi:https://doi.org/10.1111/j.1439-037X.2011.00488.x,
- Sarker, A., M. Singh, and W. Erskine. 2001. Efficiency of spatial methods in yield trials in lentil (Lens culinaris ssp. culinaris). J. Agric. Sci. 137: 427–438. doi:https://doi.org/10.1017/S002185960100154X
- Shrestha, R., K.H.M. Siddique, N.C. Turner, D.W. Turner, and J. Berger. 2005. Growth and seed yield of lentil (Lens culinaris Medikus) genotypes of West Asian and South Asian origin and crossbreds between the two under rainfed conditions in Nepal. Aust. J. Agric. Res. 56: 971–981. doi:https://doi.org/10.1071/AR05050,
- Shrestha, R., N.C. Turner, K.H.M. Siddique, and D.W. Turner. 2006. Physiological and yield responses to water deficits among lentil genotypes from diverse origins. Aust. J. Agric. Res. 57: 903–915. doi:https://doi.org/10.1071/AR05204,
- Siddique, K.H.M., S.P. Loss, K.L. Regan, and D.L. Pritchard. 1998. Adaptation of lentil (Lens culinaris Medik) to short season Mediterranean-type environments: Response to sowing rates. Aust. J. Agric. Res. 49: 1057–1066. doi:https://doi.org/10.1071/A98006,
- Silim, S.N., M.C. Saxena, and W. Erskine. 1990. Seeding density and row spacing for lentil in rain-fed Mediterranean environments. Agron. J. 82: 927–930. doi:https://doi.org/10.2134/agronj1990.00021962008200050017x,
- Silim, S.N., M.C. Saxena, and W. Erskine. 1991. Effect of sowing date on the growth and yield of lentil in a rain-fed Mediterranean environment. Exp. Agric. 27: 145–154. doi:https://doi.org/10.1017/S0014479700018809,
10.1017/S0014479700018809 Google Scholar
- Silim, S.N., M.C. Saxena, and W. Erskine. 1993a. Adaptation of lentil to the Mediterranean environment: 1. Factors affecting yield under drought conditions. Exp. Agric. 29: 9–19. doi:https://doi.org/10.1017/S0014479700020366
- Silim, S.N., M.C. Saxena, and W. Erskine. 1993b. Adaptation of lentil to the Mediterranean environment: 2. Response to moisture supply. Exp. Agric. 29: 21–28. doi:https://doi.org/10.1017/S0014479700020378
- Sinclair, T.R. 1986. Water and nitrogen limitations in soybean grain production: I. Model development. Field Crops Res. 15: 125–141. doi:https://doi.org/10.1016/0378-4290(86)90082-1,
- Sinclair, T.R. 2000. Model analysis of plant traits leading to prolonged crop survival during severe drought. Field Crops Res. 68: 211–217. doi:https://doi.org/10.1016/S0378-4290(00)00125-8,
- Sinclair, T.R., J.R. Farias, N. Neumaier, and A.L. Nepomuceno. 2003. Modeling nitrogen accumulation and use by soybean. Field Crops Res. 81: 149–158. doi:https://doi.org/10.1016/S0378-4290(02)00221-6,
- Sinclair, T.R., and M.M. Ludlow. 1986. Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust. J. Plant Physiol. 13: 329–341.https://doi.org/10.1071/PP9860329
- Sinclair, T.R., C.D. Messina, A. Beatty, and M. Samples. 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agron. J. 102: 475–482. doi:https://doi.org/10.2134/agronj2009.0195,
- Soltani, A., K. Ghassemi-Golezani, F.R. Khooie, and M. Moghaddam. 1999. A simple model for chickpea growth and yield. Field Crops Res. 62: 213–224. doi:https://doi.org/10.1016/S0378-4290(99)00017-9,
- Soltani, A., and T.R. Sinclair. 2011. A simple model for chickpea development, growth and yield. Field Crops Res. 124: 252–260. doi:https://doi.org/10.1016/j.fcr.2011.06.021,
- Soltani, A., and T.R. Sinclair. 2012. Modeling physiology of crop development, growth and yield. CAB Int., Wallingford, UK.
10.1079/9781845939700.0000 Google Scholar
- Summerfield, R.J., E.H. Roberts, W. Erskine, and R.H. Ellis. 1985. Effects of temperature and photoperiod on flowering in lentils (Lens culinaris Medic.). Ann. Bot. 56: 659–671.
- Tambal, H.A.A., W. Erskine, R. Baalbaki, and H. Zaiter. 2000. Relationship of flower and pod numbers per inflorescence with seed yield in lentil. Exp. Agric. 36: 369–378. doi:https://doi.org/10.1017/S0014479700003082,
- Thomson, B.D., and K.H.M. Siddique. 1997. Grain legume species in low rainfall Mediterranean-type environments: II. Canopy development, radiation interception, and dry-matter production. Field Crops Res. 54: 189–199. doi:https://doi.org/10.1016/S0378-4290(97)00048-8,
- Thomson, B.D., K.H.M. Siddique, M.D. Barr, and J.M. Wilson. 1997. Grain legume species in low rainfall Mediterranean-type environments: I. Phenology and seed yield. Field Crops Res. 54: 173–187. doi:https://doi.org/10.1016/S0378-4290(97)00047-6,
- Turner, N.C., G.C. Wright, and K.H.M. Siddique. 2001. Adaptation of grain legumes (pulses) to water limited environments. Adv. Agron. 71: 193–231. doi:https://doi.org/10.1016/S0065-2113(01)71015-2,
- Vadez, V., A. Soltani, and T.R. Sinclair. 2012. Modelling possible benefits of root related traits to enhance terminal drought adaptation of chickpea. Field Crops Res. 137: 108–115. doi:https://doi.org/10.1016/j.fcr.2012.07.022,
- Vadez, V., A. Soltani, and T.R. Sinclair. 2013. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Res. 146: 1–9. doi:https://doi.org/10.1016/j.fcr.2013.03.005,
- Webber, H.A., C.A. Madramootoo, M. Bourgault, M.G. Horst, G. Stulina, and D.L. Smith. 2010. Adapting the CROPGRO model for saline soils: The case for a common bean crop. Irrig. Sci. 28: 317–329. doi:https://doi.org/10.1007/s00271-009-0189-5,
- Welcker, C., B. Boussuge, C. Bencivenni, J.M. Ribaut, and F. Tardieu. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis–silking interval to water deficit. J. Exp. Bot. 58: 339–349. doi:https://doi.org/10.1093/jxb/erl227, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000243992800023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c-->
- Whitehead, S.J., R.J. Summerfield, F.J. Muehlbauer, C.J. Coyne, R.H. Ellis, and T.R. Wheeler. 2000. Crop improvement and the accumulation and partitioning of biomass and nitrogen in lentil. Crop Sci. 40: 110–112. doi:https://doi.org/10.2135/cropsci2000.401110x,
- Williams, J.R. 1991. Runoff and soil erosion. In: R.J. Hanks J.T.T. Ritchie, editors, Modeling plant and soil systems. Agron. Monogr. 31. ASA, CSSA, and SSSA, Madison, WI. p. 439–455. doi:https://doi.org/10.2134/agronmonogr31.c18
- Zakeri, H., G.P. Lafond, J.J. Schoenau, M.H. Pahlavani, A. Vandenberg, and W.E. May et al. 2012. Lentil performance in response to weather, no-till duration, and nitrogen in Saskatchewan. Agron. J. 104: 1501–1509. doi:https://doi.org/10.2134/agronj2011.0339,
10.2134/agronj2011.0339 Google Scholar
- Zhang, S., P. Li, X. Yang, Z. Wang, and X. Chen. 2011. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res. 112: 92–97. doi:https://doi.org/10.1016/j.still.2010.11.006,