Journal list menu
Estimating Source Carbon from Crop Residues, Roots and Rhizodeposits Using the National Grain-Yield Database
Corresponding Author
J. M.-F. Johnson
USDA-ARS, North Central Soil Conservation Research Lab., 803 Iowa Ave., Morris, MN, 56267
Corresponding author ([email protected])Search for more papers by this authorCorresponding Author
J. M.-F. Johnson
USDA-ARS, North Central Soil Conservation Research Lab., 803 Iowa Ave., Morris, MN, 56267
Corresponding author ([email protected])Search for more papers by this authorThe use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the USDA or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.
Abstract
Crop residue management received little attention until about 1970. Records of crop residue production are limited, but crop yield databases have been available since 1865. Carbon sequestration and other conservation benefits require a detailed knowledge of crop residue production and management. Our objectives are to: (i) review grain and biomass yield, harvest index (HI), and root C/shoot C ratios (k) of major grain crops in the USA; (ii) discuss historical agricultural-practice impacts on soil organic C (SOC); and (iii) compare estimates of total (above- and belowground) source C production (ESC) relative to minimum source C inputs required to maintain SOC (MSC). Aboveground MSC input averaged 2.5 ± 1.0 Mg C ha−1 yr−1 (n = 13) based on moldboard plow sites and 1.8 ± 0.44 Mg C ha−1 yr−1 (n = 5) based on no-till and chisel plow sites. These MSC values included only aboveground source C, thus underestimate the total MSC. When ESC is estimated from k, including rhizodeposition (krec), the true magnitude of the C cycle is at least twice that when ESC is estimated using k excluding rhizodeposition (khis). Neglecting rhizodeposition C underestimates the net production of C in cropland. Current yields and measured MSC predict continued SOC loss associated with soybean [Glycine max (L.) Merr.] and some wheat (Triticum aestivum L.) production management unless conservation tillage is used and ESC is increased. The adequacies of ESC to maintain SOC has direct implications for estimating the amount of crop residue that can be harvested and yet maintain SOC.
REFERENCES
- Abeledo, L.G., D.F. Calderini, and G.A. Slafer. 2003. Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998). Euphytica 130: 325-334 https://doi.org/10.1023/A:1023089421426,
- Allmaras, R.R., D.R. Linden, and C.E. Clapp. 2004. Corn-residue transformations into root and soil carbon as related to nitrogen, tillage and stover management. Soil Sci. Soc. Am. J. 68: 1366-1375 https://doi.org/10.2136/sssaj2004.1366,
- Allmaras, R.R., H.H. Schomberg, C.L. DouglasJr., and T.H. Dao. 2000. Soil organic carbon sequestration potential of adopting conservation tillage in US croplands. J. Soil Water Conserv. 55: 365-373
- Allmaras, R.R., D.E. Wilkins, O.C. Burnside, and D.J. Mulla. 1998. Agricultural technology and adoption of conservation practices. p. 99-157. In F.J. Pierce and W.W. Frye (ed.) Advances in soil and water conservation. Sleeping Bear Press, Chelsea, MI.
- Anderson, E.L.. 1988. Tillage and N fertilization effects on maize root growth and root:shoot ratio. Plant Soil 108: 245-251 https://doi.org/10.1007/BF02375655,
- Anderson, M.K., and E. Reinbergs. 1985. Barley breeding. p. 231-268. In D.C. Rasmussen (ed.) Barley. Agron. Monogr. 26. ASA, CSSA, and SSSA, Madison, WI.
- Balesdent, J., and M. Balabane. 1996. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28: 1261-1263 https://doi.org/10.1016/0038-0717(96)00112-5,
- Barber, S.A.. 1978. Growth and nutrient uptake of soybean roots under field conditions. Agron. J. 70: 457-461 https://doi.org/10.2134/agronj1978.00021962007000030023x,
- Barber, S.A.. 1979. Corn residue management and soil organic matter. Agron. J. 71: 625-627 https://doi.org/10.2134/agronj1979.00021962007100040025x,
- Barraclough, P.B., A.H. Weir, and H. Kuhlman. 1991. Factors affecting the growth and distribution of winter wheat roots under U.K. conditions. p. 410-417. In B.L. McMichael and H. Person (ed.) Plant roots and their environment. Elsevier Sci. Publ., Amsterdam.
- Bellamy, P.H., P.J. Loveland, R.I. Bradley, R.M. Lark, and G.J.D. Kirk. 2005. Carbon losses from all soils across England and Wales 1978–2003. Nature 437: 245-248 https://doi.org/10.1038/nature04038,
- Biomass Technical Advisory Committee. 2002. Vision for bioenergy and biobased products in the United States. Available at www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf (accessed 20 Sept. 2005; verified 4 Jan. 2006). U.S. Dep. of Energy, Washington, DC.
- Black, A.L.. 1973. Soil property changes associated with crop residue management in a wheat–fallow rotation. Soil Sci. Soc. Am. J. 37: 943-946 https://doi.org/10.2136/sssaj1973.03615995003700060039x,
- Borg, H., and D.W. Grimes. 1986. Depth development of roots with time: An empirical description. Trans. ASAE 29: 194-197
- Brancourt-Hulmel, M., G. Doussinault, C. Lecomte, P. Berard, B. Le Buanec, and M. Trottet. 2003. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 43: 37-45 https://doi.org/10.2135/cropsci2003.0037,
- Brouwer, R.. 1983. Functional equilibrium: Sense or nonsense? Neth. J. Agric. Sci. 31: 335-348
- Brye, K.R., S.T. Gower, J.M. Norman, and L.G. Bundy. 2002. Carbon budgets for a prairie and agroecosystems: Effects of land use and interannual variability. Ecol. Appl. 12: 962-979 https://doi.org/10.1890/1051-0761(2002)012[0962:CBFAPA]2.0.CO;2,
- Buyanovsky, G.A., and G.H. Wagner. 1997. Crop residue input to soil organic matter on Sanborn Field. p. 73-83. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Cheng, W., D.M. Johnson, and S. Fu. 2003. Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilization. Soil Sci. Soc. Am. J. 67: 1418-1427 https://doi.org/10.2136/sssaj2003.1418,
- Clapp, C.E., R.R. Allmaras, M.F. Layese, D.R. Linden, and R.H. Dowdy. 2000. Soil organic carbon and 13-C abundance as related to tillage, crop residue and nitrogen fertilizer under continuous corn management in Minnesota. Soil Tillage Res. 55: 127-142 https://doi.org/10.1016/S0167-1987(00)00110-0,
- Clarkson, D.T.. 1985. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant Physiol. 36: 77-115 https://doi.org/10.1146/annurev.pp.36.060185.000453
- Cochrane, W. 1993. The development of American agriculture: A historical analysis. 2nd ed. Univ. of Minnesota Press, Minneapolis.
- Collins, H.P., E.T. Elliott, K. Paustian, L.E. Bundy, W.A. Dick, D.R. Huggins, A.J.M. Smucker, and E.A. Paul. 2000. Soil carbon pools and fluxes in long-term Corn Belt agroecosystems. Soil Biol. Biochem. 32: 157-168 https://doi.org/10.1016/S0038-0717(99)00136-4,
- Connor, D.J., and A.J. Hall. 1997. Sunflower physiology. p. 113-182. In A.A. Schneiter (ed.) Sunflower production and technology. Agron. Monogr. 35. ASA, CSSA, and SSSA, Madison, WI.
- Council for Agricultural Sciences and Technology. 1992. Preparing U.S. agriculture for global climate change. Task Force Rep. 119. CAST, Ames, IA.
- Cox, T.S., J.P. Shroyer, B.-H. Liu, R.G. Sears, and T.J. Martin. 1988. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci. 28: 756-760 https://doi.org/10.2135/cropsci1988.0011183X002800050006x,
- Crookston, R.K., J.E. Kurle, P.J. Copeland, J.H. Ford, and W.E. Leuschen. 1991. Rotational cropping sequence affects yield of corn and soybeans. Agron. J. 83: 108-113 https://doi.org/10.2134/agronj1991.00021962008300010026x,
- Dardanelli, J.L., O.A. Bachmeier, R. Sereno, and R. Gil. 1997. Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res. 54: 29-38 https://doi.org/10.1016/S0378-4290(97)00017-8,
- Darwent, M.J., E. Paterson, A.J.S. McDonald, and A.D. Tomos. 2003. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. J. Exp. Bot. 54: 325-334 https://doi.org/10.1093/jxb/54.381.325,
- Diekow, J., J. Mielniczuk, H. Knicker, C. Bayer, D.P. Dick, and I. Kogel-Knabner. 2005. Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Tillage Res. 81: 87-95 https://doi.org/10.1016/j.still.2004.05.003,
- Donald, C.M., and J. Hamblin. 1976. The biological yield and harvest index of cereals as an agronomic and plant breeding criteria. Adv. Agron. 28: 361-405 https://doi.org/10.1016/S0065-2113(08)60559-3
- Douglas, C.L., Jr., P.E. Rasmussen, and R.R. Allmaras. 1989. Cutting height, yield level, and equipment modification effects on residue distribution by combines. Trans. ASAE 32: 1258-1262
- Dowdy, R.H., D.R. Linden, M.S. Dolan, and R.R. Allmaras. 1991. Impact of tillage on maize rooting patterns. p. 401-404. In L. Kutschera et al. (ed.) Root ecology and its practical applications. Proc. ISRR Symp., 3rd, Vienna, Austria. 2–6 Sept. 1991. Verein für Wurzelforschung, Klagenfurt, Austria.
- Drew, M.C.. 1975. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root, and the shoot, in barley. New Phytol. 75: 479-490 https://doi.org/10.1111/j.1469-8137.1975.tb01409.x,
- Drew, M.C., and L.R. Saker. 1975. Nutrient supply and the growth of the seminal root system in barley: II. Localized compensatory increase in lateral root growth and rates of nitrite uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 29: 435-451 https://doi.org/10.1093/jxb/29.2.435
- Duvick, D.N.. 1992. Genetic contributions to advances in yield of U.S. maize. Maydica 37: 69-79
- Duvick, D.N.. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86: 83-145 https://doi.org/10.1016/S0065-2113(05)86002-X
- Eck, H.V., and J.T. Musick. 1979. Plant stress effects on irrigated grain sorghum: I. Effects on yield. Crop Sci. 19: 589-592 https://doi.org/10.2135/cropsci1979.0011183X001900050009x,
- Edwards, E.J., D.G. Benham, L.A. Marland, and A.H. Fitter. 2004. Root production is determined by radiation flux in a temperate grassland community. Global Change Biol. 10: 209-227 https://doi.org/10.1111/j.1365-2486.2004.00729.x,
- Evans, L.T., and R.A. Fischer. 1999. Yield potential: Its definition, measurement, and significance. Crop Sci. 39: 1544-1551 https://doi.org/10.2135/cropsci1999.3961544x,
- Eve, M.D., K. Paustian, R. Follett, and E.T. Elliot. 2001. A national inventory of changes in soil carbon from national resources inventory data. p. 593-610. In R. Lal et al. (ed.) Assessment methods for soil carbon. Lewis Publ., Boca Raton, FL.
- Eve, M.D., M. Sperow, K. Paustian, and R.F. Follett. 2002. National-scale estimation of changes in soil carbon stocks on agricultural lands. Environ. Pollut. 116: 431-438 https://doi.org/10.1016/S0269-7491(01)00220-2,
- Follett, R., J.Z. Castellanos, and E.D. Buenger. 2005. Carbon dynamics and sequestration in an irrigated Vertisol in central Mexico. Soil Tillage Res. 83: 148-158 https://doi.org/10.1016/j.still.2005.02.013,
- Follett, R., E.A. Paul, S.W. Leavitt, A.D. Halvorson, D. Lyon, and G.A. Peterson. 1997. Carbon isotope ratios of Great Plains soils in wheat–fallow systems. Soil Sci. Soc. Am. J. 61: 1068-1077 https://doi.org/10.2136/sssaj1997.03615995006100040012x,
- Fu, S., and W. Cheng. 2002. Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soils. Plant Soil 238: 289-294 https://doi.org/10.1023/A:1014488128054,
- Gardner, W.K., and K.A. Boundy. 1983. The acquisition of phosphorus by Lupinus albus L.: IV. The effect of interplanting wheat and white lupins on the growth and mineral composition of the two species. Plant Soil 70: 391-402 https://doi.org/10.1007/BF02374894,
- Gardner, W.K., D.G. Parbery, and D.A. Barber. 1982. The acquisition of phosphorus by Lupinus albus L.: II. The effects of varying phosphorus supply and soil type on some characteristics of the soil/root interface. Plant Soil 68: 33-41 https://doi.org/10.1007/BF02374725,
- Goss, M.J., and C.A. Watson. 2003. The importance of root dynamics in cropping systems research. J. Crop Prod. 8: 127-155 https://doi.org/10.1300/J144v08n01_06
- Goudrain, J., and H.E. De Ruiter. 1983. Plant growth in response to CO2 enrichment at two levels of nitrogen and phosphorus supply: I. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157-169
- Green, C.J., A.M. Blackmer, and R. Horton. 1995. Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Sci. Soc. Am. J. 59: 453-459 https://doi.org/10.2136/sssaj1995.03615995005900020026x,
- Halvorson, A.D., G.A. Peterson, and C.A. Reule. 2002. Tillage system and crop rotation effects on dryland crop yields and soil carbon in the central Great Plains. Agron. J. 94: 1429-1436 https://doi.org/10.2134/agronj2002.1429,
- Havlin, J.L., and D.E. Kissel. 1997. Management effects on soil organic carbon and nitrogen in the east-central Great Plains of Kansas. p. 381-386. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Hay, R.K.M.. 1995. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126: 197-216 https://doi.org/10.1111/j.1744-7348.1995.tb05015.x,
- Heath, J., E. Ayres, M. Possell, R.D. Bardgett, H.I.J. Black, H. Grant, P. Ineson, and G. Kerstiens. 2005. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309: 1711-1713 https://doi.org/10.1126/science.1110700,
- Hilfiker, R.E., and B. Lowery. 1988. Effect of conservation tillage systems on corn root growth. Soil Tillage Res. 12: 269-283 https://doi.org/10.1016/0167-1987(88)90016-5,
- Hobbs, J.A., and P.I. Brown. 1965. Effects of cropping and management on nitrogen and organic carbon contents of a western Kansas soil. Tech. Bull. 144. Kansas Agric. Exp. Stn., Manhattan.
- Hoffland, E., J.A. Nelemands, and G.R. Findenegg. 1990. Origin of organic acids exuded by roots of P stressed rape plants. p. 179-184. In M.L. Beusichem (ed.) Plant nutrition—physiology and applications. Kluwer Acad. Publ., Dordrecht, the Netherlands.
- Hooker, B.A., T.F. Morris, R. Peters, and Z.G. Cardon. 2005. Long-term effects of tillage and corn stalk return on soil carbon dynamics. Soil Sci. Soc. Am. J. 69: 188-196
- Horner, G.M., M.M. Overson, G.O. Baker, and W.W. Pawson. 1960. Effect of cropping practices on yield, soil organic matter, and erosion in the Pacific Northwest wheat region. Coop. Bull. 1. Washington Agric. Exp. Stn., Pullman; Idaho Agric. Exp. Stn., Moscow; Oregon Agric. Exp. Stn., Corvalis; USDA-ARS, Washington, DC.
- Huggins, D.R., G.A. Buyanovky, G.H. Wagner, J.R. Brown, R.G. Darmody, T.R. Peck, G.W. Lesoing, M.B. Vanotti, and L.G. Bundy. 1998a. Soil organic C in the tallgrass prairie-derived region of the Corn Belt: Effects of long-term crop management. Soil Tillage Res. 47: 219-234 https://doi.org/10.1016/S0167-1987(98)00108-1,
- Huggins, D.R., C.E. Clapp, R.R. Allmaras, J.A. Lamb, and M.F. Layese. 1998b. Carbon dynamics in corn–soybean sequences as estimated from natural carbon-13 abundance. Soil Sci. Soc. Am. J. 62: 195-203 https://doi.org/10.2136/sssaj1998.03615995006200010026x,
- Huggins, D.R., and D.J. Fuchs. 1997. Long-term N management effects on corn yield and soil C of an Aquic Haplustoll in Minnesota. p. 121-128. In E.A. Paul et al. (ed.) Soil organic matter in temperate ecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Hurd, E.A.. 1974. Phenotype and drought tolerance in wheat. Agric. For. Meteorol. 14: 39-55 https://doi.org/10.1016/0002-1571(74)90009-0,
- Hütsch, B.W., J. Augustin, and W. Merbach. 2002. Plant rhizodeposition—an important source for carbon turnover in soils. Z. Pflanzenernaehr. Bodenkd. 165: 397-407 https://doi.org/10.1002/1522-2624(200208)165:4<397::AID-JPLN397>3.0.CO;2-C
- Janzen, H.H., C.A. Campbell, R.C. Izaurralde, B.H. Ellert, N.G. Juma, W.B. McGill, and R.P. Zentner. 1998. Management effects on soil C storage on the Canadian prairies. Soil Tillage Res. 47: 181-195 https://doi.org/10.1016/S0167-1987(98)00105-6,
- Jenkinson, D.S. 1981. The fate of plant and animal residues in soil. p. 505-561. In D.J. Greenland and M.H.B. Hayes (ed.) The chemistry of soil processes. John Wiley & Sons, Chichester, UK.
- Johnen, G., and D. Sauerbeck. 1977. A tracer technique for measuring growth, mass and microbial breakdown of plant roots during vegetation. p. 366-373. In V. Lohm and T. Persson (ed.) Soil organisms as components of ecosystems. Proc. Int. Soil Zoological Colloquium, 6th. Ecol. Bull., Stockholm, Sweden.
- Johnson, J.F., D.L. Allan, C.P. Vance, and G. Weiblen. 1996. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus Contribution to organic acid exudation by proteoid roots. Plant Physiol. 112: 19-30
- Jones, O.R., and T.W. Popham. 1997. Cropping and tillage systems for dryland grain production in the southern High Plains. Agron. J. 89: 222-232 https://doi.org/10.2134/agronj1997.00021962008900020012x,
- Jordan, W.R., and F.R. Miller. 1980. Differences in adaptation to water stress within crop species. p. 383-399. In P.J. Kramer and N.C. Turner (ed.) Adaptations of plants to water and high temperature stresses. John Wiley & Sons, New York.
- Jordan, W.R., and R.L. Monk. 1980. Enhancement of drought resistance of sorghum: Progress and limitations. Corn Sorgh. Res. Conf. Rep. 35: 185-204
- Kaspar, T.E., and W.L. Bland. 1992. Soil temperature and root growth. Soil Sci. 154: 290-298 https://doi.org/10.1097/00010694-199210000-00005,
- Kay, B.D. 1998. Soil structure and organic carbon: A review. p. 169-197. In R. Lal et al. (ed.) Soil processes and the carbon cycle. CRC Press, Boca Raton, FL.
- Keeney, D.R., and J.L. Hatfield. 2001. The nitrogen cycle: Historical perspective, and current and potential future concerns. p. 3-16. In R. Follett and J.L. Hatfield (ed.) Nitrogen in the environment: Sources, problems, and solutions. Elsevier, Amsterdam.
- Klepper, B. 1991. Root–shoot relationships. p. 265-286. In Y. Waisel et al. (ed.) Plant roots: The hidden half. Marcel Dekker, New York.
- Klepper, B., R.K. Belford, and R.W. Rickman. 1984. Root and shoot development in winter wheat. Agron. J. 76: 117-122 https://doi.org/10.2134/agronj1984.00021962007600010029x,
- Kucharik, C.J., K.R. Brye, J.M. Norman, J.A. Foley, S.T. Gower, and L.G. Bundy. 2001. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems 4: 237-258 https://doi.org/10.1007/s10021\N001\N0007-2,
- Kumudini, S.. 2002. Trials and tribulations: A review of the role of assimilate supply in soybean genetic improvement. Field Crops Res. 75: 211-222 https://doi.org/10.1016/S0378-4290(02)00027-8,
- Kuzyakov, Y.. 2002a. Review: Factors affecting rhizosphere priming effects. Z. Pflanzenernaehr. Bodenkd. 165: 382-396
- Kuzyakov, Y.. 2002b. Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods. Soil Biol. Biochem. 34: 1621-1631 https://doi.org/10.1016/S0038-0717(02)00146-3,
- Kuzyakov, Y., and W. Cheng. 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 33: 1915-1925 https://doi.org/10.1016/S0038-0717(01)00117-1,
- Lal, R.. 2004. Is crop residue a waste? J. Soil Water Conserv. 59: 136-139
- Lal, R., R.F. Follett, and J.M. Kimble. 2003. Achieving soil carbon sequestration in the United States: A challenge to the policy makers. Soil Sci. 168: 827-845 https://doi.org/10.1097/01.ss.0000106407.84926.6b,
- Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole. 1998. Potential of US cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Chelsea, MI.
- Larson, W.E.. 1979. Crop residues: Energy production or erosion control? J. Soil Water Conserv. 34: 74-76
- Larson, W.E., C.E. Clapp, W.H. Pierre, and Y.B. Morachan. 1972. Effects of increasing amounts of organic residues on continuous corn: II. Organic carbon, nitrogen, phosphorus and sulfur. Agron. J. 64: 204-208 https://doi.org/10.2134/agronj1972.00021962006400020023x,
- Latzko, E., and G.J. Kelly. 1983. The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants. Physiol. Veg. 21: 805-815
- Lekkerkerk, L.J.A., S.C.Van De Geijn, and J.A.Van Veen. 1990. Effects of elevated atmospheric CO2 levels on the carbon economy of a soil planted with wheat. p. 423-429. In A.F. Bouwman (ed.) Soils and the greenhouse effect. John Wiley & Sons, New York.
- Linden, D.R., C.E. Clapp, and R.H. Dowdy. 2000. Long-term corn grain and stover yields as a function of tillage and residue removed in east central Minnesota. Soil Tillage Res. 56: 167-174 https://doi.org/10.1016/S0167-1987(00)00139-2,
- Lipton, D.S., R.W. Blanchar, and D.G. Blevins. 1987. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol. 85: 315-317 https://doi.org/10.1104/pp.85.2.315,
- Lynch, P.J., and K.J. Frey. 1993. Genetic improvement in agronomic and physiological traits of oat since 1914. Crop Sci. 33: 984-988 https://doi.org/10.2135/cropsci1993.0011183X003300050022x,
- Lyon, D.J.. 1998. Sunflower residue weight and ground cover loss during summer fallow. J. Soil Water Conserv. 53: 71-73
- Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, Boston.
- Mason, W.K., H.R. Rowse, A.T.P. Bennie, T.C. Kaspar, and H.M. Taylor. 1982. Responses of soybeans to two row spacings and two water levels: II. Water use, root growth, and plant water status. Field Crops Res. 5: 15-29 https://doi.org/10.1016/0378-4290(82)90003-X,
- Maxwell, C.A., C.P. Vance, G.H. Heichel, and S. Stade. 1984. CO2 fixation in alfalfa and birdsfoot trefoil root nodules and partitioning of 14C to the plant. Crop Sci. 24: 257-264 https://doi.org/10.2135/cropsci1984.0011183X002400020012x,
- Merrill, S.D., D.L. Tanaka, and J.D. Hanson. 2002. Root length growth of eight crop species in Haplustoll soils. Soil Sci. Soc. Am. J. 66: 913-923
- Miller, F.R., and Y. Kebede. 1984. Genetic contributions to yield gains in sorghum, 1950 to 1980. p. 1-14. In W.R. Fehr (ed.) Genetic contributions to yield gains of five major crop plants. CSSA Spec. Publ. 7. CSSA, Madison, WI.
- Mitchell, R.L., and W.J. Russell. 1971. Root development and rooting patterns of soybean (Glycine max L. Merrill) evaluated under field conditions. Agron. J. 63: 313-316 https://doi.org/10.2134/agronj1971.00021962006300020034x,
- Molina, J.A.E., C.E. Clapp, D.R. Linden, R.R. Allmaras, M.F. Layese, R.H. Dowdy, and H.H. Cheng. 2001. Modeling incorporation of corn (Zea mays L.) carbon from roots and rhizodeposition into soil organic matter. Soil Biol. Biochem. 33: 83-92 https://doi.org/10.1016/S0038-0717(00)00117-6,
- Morrison, M.J., H.D. Voldeng, and E.R. Cober. 1999. Physiological changes from fifty-eight years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 91: 685-689 https://doi.org/10.2134/agronj1999.914685x,
- Newell, R.L., and W.W. Wilhelm. 1987. Conservation tillage and irrigation effects on corn root development. Agron. J. 79: 160-165 https://doi.org/10.2134/agronj1987.00021962007900010033x,
- Norby, R.J.. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil 165: 9-20 https://doi.org/10.1007/BF00009958,
- Ojima, K., H. Abe, and K. Ohira. 1984. Release of citric acid into the medium by aluminum-tolerant carrot cells. Plant Cell Physiol. 25: 855-858
- Ortiz, R., M. Nurminiemi, S. Madsen, O.A. Rognli, and A. Bjornstad. 2002. Genetic gains in Nordic spring barley breeding over sixty years. Euphytica 126: 283-289 https://doi.org/10.1023/A:1016302626527,
- O'Toole, J.C., and W.L. Bland. 1987. Genotypic variation in crop root systems. Adv. Agron. 41: 91-145 https://doi.org/10.1016/S0065-2113(08)60803-2
- Paustian, K., H.P. Collins, and E.A. Paul. 1997. Management controls on soil carbon. p. 15-49. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Paustian, K., W.J. Parton, and J. Persson. 1992. Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci. Soc. Am. J. 56: 476-488 https://doi.org/10.2136/sssaj1992.03615995005600020023x,
- Pedersen, P., K.J. Boote, J.W. Jones, and J.G. Lauer. 2004. Modifying the CROPGRO–soybean model to improve predictions for the Upper Midwest. Agron. J. 96: 556-564 https://doi.org/10.2134/agronj2004.0556,
- Peltonen-Sainio, P., and R. Karjalainen. 1990. Yield reduction of oat cultivars in relation to disease development caused by barley yellow dwarf virus. J. Agric. Sci. (Helsinki) 62: 265-273
- Peterson, G.A., A.D. Halvorson, J.L. Havlin, O.R. Jones, D.J. Lyon, and D.L. Tanaka. 1998. Reduced tillage and increased cropping intensity in the Great Plains conserves soil C. Soil Tillage Res. 47: 207-218 https://doi.org/10.1016/S0167-1987(98)00107-X,
- Poel, L.W.. 1955. Carbon dioxide fixation by barley roots. J. Exp. Bot. 4: 157-163 https://doi.org/10.1093/jxb/4.2.157,
- Porter, J.R., B. Klepper, and R.K. Belford. 1986. A model (WHTROOT) which synchronizes root growth and development with shoot development for winter wheat. Plant Soil 92: 133-145 https://doi.org/10.1007/BF02372274,
- Potter, K.N., O.R. Jones, H.A. Torbert, and P.W. Unger. 1997. Crop rotation and tillage effects on organic carbon sequestration in the semi-arid southern Great Plains. Soil Sci. 162: 140-147 https://doi.org/10.1097/00010694-199702000-00007,
- Power, J.F., and R.F. Follett. 1987. Monoculture. Sci. Am. 255: 78-86
- Prihar, S.S., and B.A. Stewart. 1991. Sorghum harvest index in relation to plant size, environment and cultivar. Agron. J. 83: 603-608 https://doi.org/10.2134/agronj1991.00021962008300030020x,
- Prince, S.D., J. Haskett, M. Steininger, H. Strand, and R. Wright. 2001. Net primary production of U.S. Midwest croplands from agricultural harvest yield data. Ecol. Appl. 11: 1194-1205 https://doi.org/10.1890/1051-0761(2001)011[1194:NPPOUS]2.0.CO;2,
- Rasmussen, P.E., R.R. Allmaras, C.R. Rohde, and N.C. RoagerJr,. 1980. Crop residue influences on soil carbon and nitrogen in a wheat–fallow system. Soil Sci. Soc. Am. J. 44: 596-600 https://doi.org/10.2136/sssaj1980.03615995004400030033x,
- Reicosky, D.C., and R.R. Allmaras. 2003. Advances in tillage research in North American cropping systems. J. Crop Prod. 8 (1–2): 75-125 https://doi.org/10.1300/J144v08n01_05
- Reicosky, D.C., S.D. Evans, C.A. Cambardella, R.R. Allmaras, A.R. Wilts, and D.R. Huggins. 2002. Continuous corn with moldboard tillage: Residue and fertility effects on soil carbon. J. Soil Water Conserv. 57: 277-284
- Reicosky, D.C., and M.J. Lindstrom. 1993. Fall tillage method: Effect on short-term carbon dioxide flux from soil. Agron. J. 85: 1237-1243 https://doi.org/10.2134/agronj1993.00021962008500060027x,
- Rendig, V.V., and H.M. Taylor. 1989. Principles of soil–plant interrelationships. McGraw-Hill, New York.
- Ric de Vos, C., H.J. Lubberding, and H.F. Bienfait. 1986. Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiol. 81: 842-846 https://doi.org/10.1104/pp.81.3.842,
- Riedell, W.E., and P.D. Evenson. 1993. Rootworm feeding tolerance in single-cross maize hybrids from different eras. Crop Sci. 33: 951-955 https://doi.org/10.2135/cropsci1993.0011183X003300050015x,
- Ritchie, S.W., and J.J. Hanway. 1982. How a corn plant develops. Spec. Rep. 48. Iowa State Univ., Ames, IA.
- Robinson, R.G. 1978. Production and culture. p. 89-143. In J.F. Carter (ed.) Sunflower science and technology. Agron. Monogr. 19. ASA, CSSA, and SSSA, Madison, WI.
- Rochette, P., D.A. Angers, and L.B. Flanagan. 1999a. Maize residue decomposition measurement using soil surface carbon dioxide fluxes and natural abundance of carbon13 Soil Sci. Soc. Am. J. 63: 1385-1396 https://doi.org/10.2136/sssaj1999.6351385x,
- Rochette, P., and L.B. Flanagan. 1997. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Am. J. 61: 466-474 https://doi.org/10.2136/sssaj1997.03615995006100020014x,
- Rochette, P., L.B. Flanagan, and E.G. Gregorich. 1999b. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon13 Soil Sci. Soc. Am. J. 63: 1207-1213 https://doi.org/10.2136/sssaj1999.6351207x,
- Russell, R.S. 1977. Plant root systems: Their function and interaction with the soil. McGraw-Hill, London.
- Ruttan, V.W. 1982. Agricultural research policy. Univ. of Minnesota Press, Minneapolis.
- Sattelmacher, B., F. Klotz, and H. Marschner. 1990. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 123: 131-137 https://doi.org/10.1007/BF00011258,
- Schaupaugh, W.T., Jr., and J.R. Wilcox. 1980. Relationships between harvest indices and other plant characteristics in soybean. Crop Sci. 20: 529-533 https://doi.org/10.2135/cropsci1980.0011183X002000040028x,
- Siddique, K.H.M., R.K. Belford, and D. Tennant. 1990. Root:shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment. Plant Soil 121: 89-98 https://doi.org/10.1007/BF00013101,
- Simmons, S.R. 1987. Growth, development and physiology. p. 77-113. In E.G. Heyne (ed.) Wheat and wheat improvement. Agron. Monogr. 13. ASA, CSSA, and SSSA, Madison, WI.
- Sisti, C.P.J., H.P. dos Santos, R. Kohhann, B.J.R. Alves, S. Urquiaga, and R.M. Boddey. 2004. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res. 76: 39-58 https://doi.org/10.1016/j.still.2003.08.007,
- Sivakumar, M.V.K., H.M. Taylor, and R.H. Shaw. 1977. Top and root relations of field-grown soybeans. Agron. J. 69: 470-475 https://doi.org/10.2134/agronj1977.00021962006900030034x,
- Slobodian, N., K. Van Rees, and D. Pennock. 2002. Cultivation-induced effects on belowground biomass and organic carbon. Soil Sci. Soc. Am. J. 66: 924-930 https://doi.org/10.2136/sssaj2002.0924,
- Smucker, A.J.M. 1984. Carbon utilization and losses by plant root systems. p. 27-46. In S.A. Barber et al. (ed.) Plants, nutrient and water influx, and plant growth. ASA Spec. Publ. 49. ASA, CSSA, and SSSA, Madison, WI.
- Soil Science Society of America. 1998. Internet glossary of soil science terms [Online]. Available at www.soils.org/sssagloss/search.html (accessed 9 Sept. 2005; verified 4 Jan. 2006). SSSA, Madison, WI.
- Specht, J.E., D.D. Hume, and S.V. Kumundi. 1999. Soybean yield potential: A genetic and physiological perspective. Crop Sci. 39: 1560-1570 https://doi.org/10.2135/cropsci1999.3961560x,
- Sperow, M., M. Eve, and K. Paustian. 2003. Potential soil C sequestration on US agricultural soils. Clim. Change 57: 319-339 https://doi.org/10.1023/A:1022888832630,
- Stevenson, F.J. 1994. Humic chemistry: Genesis, composition, reactions. 2nd ed. John Wiley & Sons, New York.
- Stewart, W.M., D.W. Dibb, A.E. Johnston, and T.J. Smyth. 2005. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97: 1-6 https://doi.org/10.2134/agronj2005.0001,
- Stone, L.R., D.E. Goodrum, A.J. Schlegel, M.N. Jaafar, and A.H. Khan. 2002. Water depletion depth of grain sorghum and sunflower in the central High Plains. Agron. J. 94: 936-943 https://doi.org/10.2134/agronj2002.0936,
- Swinnen, J., J.A. van Veen, and R. Merckx. 1994. Rhizosphere carbon fluxes in field-grown spring wheat: Model calculations based on 14C partitioning after pulse-labeling. Soil Biol. Biochem. 26: 171-182 https://doi.org/10.1016/0038-0717(94)90160-0,
- Taylor, H.M.. 1986. Methods of studying root systems in the field. HortScience 21: 952-956
- Tisdall, J.M., and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33: 141-163 https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
- Tokatlidis, I.S., and S.D. Koutroubas. 2004. A review of maize hybrids: Dependence on high plant populations and its implications for crop yield stability. Field Crops Res. 88: 103-114 https://doi.org/10.1016/j.fcr.2003.11.013,
- Tollenaar, M.. 1983. Potential vegetative productivity in Canada. Can. J. Plant Sci. 63: 1-10 https://doi.org/10.4141/cjps83-001,
- Tollenaar, M., and A.F. Lee. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Res. 75: 161-169 https://doi.org/10.1016/S0378-4290(02)00024-2,
- Torbert, H.A., S.A. Prior, H.H. Rogers, and C.W. Wood. 2000. Review of elevated atmospheric CO2 effects on agro-ecosystems: Residue decomposition processes and soil C storage. Plant Soil 224: 59-73 https://doi.org/10.1023/A:1004797123881,
- Unger, P.W., and R.L. Baumhardt. 1999. Factors related to dryland grain sorghum yield increases: 1939 through 1997. Agron. J. 91: 870-875 https://doi.org/10.2134/agronj1999.915870x,
- USDA–National Agricultural Statistics Service. 2003. Crops county data files. Available at www.usda.gov/nass/graphics/county03/indexdata.htm (accessed 1 Sept. 2005; verified 4 Jan. 2006). USDA–NASS, Washington, DC.
- USDA–National Agricultural Statistic Service. 2004. USDA historical track records. Available at www.usda.gov/nass/pubs/trackrec/croptr04.pdf (accessed 10 May 2005; verified 4 Jan. 2006.). USDA–NASS, Washington, DC.
- Vance, C.P., S. Stade, and C.A. Maxwell. 1983. Alfalfa root nodule carbon dioxide fixation: I. Association with nitrogen fixation and incorporation into amino acids. Plant Physiol. 72: 469-473 https://doi.org/10.1104/pp.72.2.469,
- vanNoordwijk, M., and G. Brouwer. 1991. Review of quantitative root length data in agriculture. p. 515-524. In B.L. McMichael and H. Person (ed.) Plant roots and their environment. Elsevier, Amsterdam.
- Vanotti, M.B., L.G. Bundy, and A.E. Peterson. 1997. Nitrogen fertilizer and legume–cereal rotation effects on soil productivity and organic matter dynamics in Wisconsin. p. 105-119. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Vetsch, J.A., and G.W. Randall. 2004. Corn production as affected by nitrogen application timing and tillage. Agron. J. 96: 502-509 https://doi.org/10.2134/agronj2004.0502,
- Vitosh, M.L., R.E. Lucas, and G.H. Silva. 1997. Long-term effects of fertilizer and manure on corn yield, soil carbon, and other soil chemical properties in Michigan. p. 129-139. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems: Long-term experiments in North America. CRC Press, Boca Raton, FL.
- Voldeng, H.D., E.R. Cober, D.J. Hume, C. Gillards, and M.J. Morrison. 1997. Fifty-eight years of genetic improvement of short season cultivars in Canada. Crop Sci. 37: 428-431 https://doi.org/10.2135/cropsci1997.0011183X003700020020x,
- Vuorinen, A.H., E.M. Vapaavuori, O. Raatikainen, and S.P. Lapinjok. 1992. Metabolism of inorganic carbon taken up by roots in Salix plants. J. Exp. Bot. 43: 789-795 https://doi.org/10.1093/jxb/43.6.789,
- Wilhelm, W.W., J.M.F. Johnson, J.L. Hatfield, W.B. Voorhees, and D.R. Linden. 2004. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 96: 1-17 https://doi.org/10.2134/agronj2004.0001,
- Wilhelm, W.W., L.N. Mielke, and C.R. Fenster. 1982. Root development of winter wheat as related to tillage practices in western Nebraska. Agron. J. 74: 85-88 https://doi.org/10.2134/agronj1982.00021962007400010023x,
- Wilts, A.R., D.C. Reicosky, R.R. Allmaras, and C.E. Clapp. 2004. Long-term corn residue effects: Harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci. Soc. Am. J. 68: 1342-1351 https://doi.org/10.2136/sssaj2004.1342,
- Yang, H.S., A. Dobermann, J.L. Lindquist, D.T. Walters, T.J. Arkebauer, and K.G. Cassman. 2004. HYBRID-MAIZE: A maize accumulation model that combines two crop modeling approaches. Field Crops Res. 87: 131-154 https://doi.org/10.1016/j.fcr.2003.10.003,