Journal list menu
Climate Impacts on Agriculture: Implications for Crop Production
Corresponding Author
J. L. Hatfield
Laboratory Director, National Laboratory for Agriculture and the Environment, Ames, IA, 50011
Corresponding author ([email protected]).
Search for more papers by this authorK. J. Boote
Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorB. A. Kimball
USDA-ARS, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, 85138
Search for more papers by this authorL. H. Ziska
USDA Crop Systems and Global Change Lab., Beltsville, MD, 20705
Search for more papers by this authorR. C. Izaurralde
Joint Global Change Research Institute, Pacific Northwest National Lab., Univ. of Maryland, College Park, MD, 20740
Search for more papers by this authorD. Ort
USDA/ARS, Photosynthesis Research Unit, Univ. of Illinois, Urbana, IL, 61801
Search for more papers by this authorA. M. Thomson
Joint Global Change Research Institute, Pacific Northwest National Lab., Univ. of Maryland, College Park, MD, 20740
Search for more papers by this authorD. Wolfe
Dep. of Horticulture, Cornell Univ., Ithaca, NY, 14853
Search for more papers by this authorCorresponding Author
J. L. Hatfield
Laboratory Director, National Laboratory for Agriculture and the Environment, Ames, IA, 50011
Corresponding author ([email protected]).
Search for more papers by this authorK. J. Boote
Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorB. A. Kimball
USDA-ARS, U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, 85138
Search for more papers by this authorL. H. Ziska
USDA Crop Systems and Global Change Lab., Beltsville, MD, 20705
Search for more papers by this authorR. C. Izaurralde
Joint Global Change Research Institute, Pacific Northwest National Lab., Univ. of Maryland, College Park, MD, 20740
Search for more papers by this authorD. Ort
USDA/ARS, Photosynthesis Research Unit, Univ. of Illinois, Urbana, IL, 61801
Search for more papers by this authorA. M. Thomson
Joint Global Change Research Institute, Pacific Northwest National Lab., Univ. of Maryland, College Park, MD, 20740
Search for more papers by this authorD. Wolfe
Dep. of Horticulture, Cornell Univ., Ithaca, NY, 14853
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Abstract
Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 yr present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean [Glycine max (L.) Merr.] could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency (WUE); however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.
REFERENCES
- Adams, C.D., S. Spitzer, and and R.M. Cowan. 1996. Biodegradation of nonionic surfactants and effects of oxidative pretreatment. J. Environ. Eng. 122: 477–483 https://doi.org/10.1061/(ASCE)0733-9372(1996)122:6(477)
10.1061/(ASCE)0733-9372(1996)122:6(477) Google Scholar
- Adams, R.M., C. Rosenzweig, R.M. Peart, J.T. Richie, B.A. McCarl, J.D. Glyer, R.B. Curry, J.W. Jones, K.J. Boote, and L.H. Allen Jr., 1990. Global climate change and US agriculture. Nature (London) 345: 219–224 https://doi.org/10.1038/345219a0 ,
- Aerts, M., P. Cockrell, G. Nuessly, R. Raid, T. Schueneman, and and D. Seal. 1999. Crop profile for corn (sweet) in Florida. Available at http://www.impcenters.org/CropProfiles/docs/FLcorn-sweet.html (verified 15 Dec. 2010).
- Ainsworth, E.A.. 2008. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Change Biol. 14: 1642–1650 https://doi.org/10.1111/j.1365-2486.2008.01594.x ,
- Ainsworth, E.A., P.A. Davey, C.J. Bernacchi, O.C. Dermody, E.A. Heaton, D.J. Moore, P.B. Morgan, S.A. Naidu, H.-S. Yoo Ra, X.-G. Zhu, P.S. Curtis, and and S.P. Long. 2002. A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8: 695–709 https://doi.org/10.1046/j.1365-2486.2002.00498.x ,
- Ainsworth, E.A., and and S.P. Long. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 New Phytol. 165: 351–372 ,
- Ainsworth, E.A., and and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant Cell Environ. 30: 258–270 https://doi.org/10.1111/j.1365-3040.2007.01641.x ,
- Alagarswamy, G., and and J.T. Ritchie. 1991. Phasic development in CERES-sorghum model. p. 143–152. In T. Hodges (ed.) Predicting crop phenology. CRC Press, Boca Raton, FL.
- Allen, L.H. Jr., 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. J. Environ. Qual. 19: 15–34 https://doi.org/10.2134/jeq1990.00472425001900010002x ,
- Allen, L.H. Jr., and and K.J. Boote. 2000. Crop ecosystem responses to climatic change: Soybean. p. 133–160. In K.R. Reddy and H.F. Hodges (ed.) Climate change and global crop productivity. CAB Int., New York.
10.1079/9780851994390.0133 Google Scholar
- Allen, L.H. Jr., D. Pan, K.J. Boote, N.B. Pickering, and and J.W. Jones. 2003. Carbon dioxide and temperature effects on evapotranspiration and water-use efficiency of soybean. Agron. J. 95: 1071–1081 https://doi.org/10.2134/agronj2003.1071 ,
- Allen, R.G., F.N. Gichuki, and and C. Rosenzweig. 1991. CO2–induced climatic changes and irrigation-water requirements. J. Water Resour. Plann. Manage. 117: 157–178 https://doi.org/10.1061/(ASCE)0733-9496(1991)117:2(157)
- Allen, R.G., I.A. Walter, R.L. Elliot, T.A. Howell, D. Itenfisu, M.E. Jensen, and and R.L. Snyder. 2005. The ASCE standardized reference evapotranspiration equation. Am. Soc. of Civil Eng., Reston, VA.
- Alocilja, E.C., and and J.T. Ritchie. 1991. A model for the phenology of rice. p. 181–189. In T. Hodges (ed.) Predicting crop phenology. CRC Press, Boca Raton, FL.
- Amthor, J.S.. 2001. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Res. 73: 1–34 https://doi.org/10.1016/S0378-4290(01)00179-4 ,
- Andre, M., and and H. du Cloux. 1993. Interaction of CO2 enrichment and water limitations on photosynthesis and water use efficiency in wheat. Plant Physiol. Biochem. 31: 103–112 ,
- Archambault, D.J.. 2007. Efficacy of herbicides under elevated temperature and CO2. p. 262–279. In P.C.D. Newton et al. (ed.) Agroecosystems in a changing climate. CRC Press, Boston, MA.
- Ashmore, M.R.. 2002. Effects of oxidants at the whole plant and community level. p. 89–118. In J.N.B. Bell and M. Treshow (ed.) Air pollution and plant life. John Wiley, Chichester, NH.
- Ashmore, M.R.. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28: 949–964 https://doi.org/10.1111/j.1365-3040.2005.01341.x ,
- Badu-Apraku, B., R.B. Hunter, and and M. Tollenaar. 1983. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Can. J. Plant Sci. 63: 357–363 https://doi.org/10.4141/cjps83-040 ,
- Baker, J.T., and L.H. Allen Jr., 1993a. Contrasting crop species responses to CO2 and temperature: Rice, soybean, and citrus. Vegetatio 104/105: 239–260 https://doi.org/10.1007/BF00048156 ,
- Baker, J.T., and L.H. Allen Jr., 1993b. Effects of CO2 and temperature on rice: A summary of five growing seasons. J. Agric. Meteorol. 48: 575–582
10.2480/agrmet.48.575 Google Scholar
- Baker, J.T., L.H. Allen Jr., and and K.J. Boote. 1989. Response of soybean to air temperature and carbon dioxide concentration. Crop Sci. 29: 98–105 https://doi.org/10.2135/cropsci1989.0011183X002900010024x ,
- Baker, J.T., K.J. Boote, and L.H. Allen Jr., 1995. Potential climate change effects on rice: Carbon dioxide and temperature. p. 31–47. In C. Rosenzweig et al. (ed.) Climate change and agriculture: Analysis of potential international impacts. ASA Spec. Publ. 59. ASA, CSSA, and SSSA, Madison, WI.
- Balaguer, L., J.D. Barnes, A. Panicucci, and and A.M. Borland. 1995. Production and utilization of assimilates in wheat (Triticum aestivum L.) leaves exposed to elevated O3 and/or CO2 New Phytol. 129: 557–568 https://doi.org/10.1111/j.1469-8137.1995.tb03023.x ,
- Barnes, J.D., J.H. Ollerenshaw, and and C.P. Whitfield. 1995. Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.). Glob. Change Biol. 1: 101–114
- Ben-Asher, J., A. Garcia, Y. Garcia, and and G. Hoogenboom. 2008. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthesis 46: 595–603
- Bender, J., U. Hertstein, and and C. Black. 1999. Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: A statistical analysis of ‘ESPACE-wheat’ results. Eur. J. Agron. 10: 185–195 https://doi.org/10.1016/S1161-0301(99)00009-X ,
- Bernacchi, C.J., B.A. Kimball, D.R. Quarles, S.P. Long, and and D.R. Ort. 2007. Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 143: 134–144 ,
- Bernacchi, C.J., A.D.B. Leakey, L.E. Heady, P.B. Morgan, F.G. Dohleman, J.M. McGrath, K.M. Gillespie, V.E. Wittig, A. Rogers, S.P. Long, and and D.R. Ort. 2006. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ. 29: 2077–2090 https://doi.org/10.1111/j.1365-3040.2006.01581.x ,
- Black, V.J., C.R. Black, J.A. Roberts, and and C.A. Stewart. 2000. Impact of ozone on the reproductive development of plants. New Phytol. 147: 421–447 https://doi.org/10.1046/j.1469-8137.2000.00721.x ,
- Bolhuis, C.G., and and W. de Groot. 1959. Observations on the effect of varying temperature on the flowering and fruit set in three varieties of groundnut. Neth. J. Agric. Sci. 7: 317–326
- Boote, K.J., L.H. Allen, P.V.V. Prasad, J.T. Baker, R.W. Gesch, A.M. Snyder, D. Pan, and and J.M.G. Thomas. 2005. Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. J. Agric. Meteorol. 60: 469–474
10.2480/agrmet.469 Google Scholar
- Boote, K.J., J.W. Jones, and and G. Hoogenboom. 1998. Simulation of crop growth: CROPGRO Model. p. 651–692. In R.M. Peart and R.B. Curry (ed.) Agricultural systems modeling and simulation. Marcel Dekker, New York.
- Boote, K.J., N.B. Pickering, and L.H. Allen Jr., 1997. Plant modeling: Advances and gaps in our capability to project future crop growth and yield in response to global climate change. p. 179–228. In L.H. Allen et al. (ed.) Advances in carbon dioxide effects research. ASA Spec. Publ. 61. ASA, CSSA, and SSSA, Madison, WI.
- Bradley, B.A., and and J.F. Mustard. 2005. Identifying land cover variability distinct from land cover change: Cheatgrass in the great basin. Remote Sens. Environ. 94: 204–213 https://doi.org/10.1016/j.rse.2004.08.016 ,
- Brown, P.W.. 1987. User's guide to the Arizona meteorological network. City of Phoenix. Water Conserv. and Resource Div., and Arizona Coop. Ext., Phoenix, AZ.
- Cheng, W., H. Sakai, K. Yagi, and and T. Hasegawa. 2010. Combined effects of elevated CO2 and high night temperature con carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agric. For. Meteorol. 150: 1174–1181 https://doi.org/10.1016/j.agrformet.2010.05.001 ,
- Chowdhury, S.I.C., and and I.F. Wardlaw. 1978. The effect of temperature on kernel development in cereals. Aust. J. Agric. Res. 29: 205–233 https://doi.org/10.1071/AR9780205 ,
- Coakley, S.M., H. Scherm, and and S. Chakraborty. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37: 399–426 https://doi.org/10.1146/annurev.phyto.37.1.399 ,
- Commuri, P.D., and and R.D. Jones. 2001. High temperatures during endosperm cell division in maize: A genotypic comparison under in vitro and field conditions. Crop Sci. 41: 1122–1130 https://doi.org/10.2135/cropsci2001.4141122x ,
- Conroy, J., and and P. Hocking. 1993. Nitrogen nutrition of C-3 plants at elevated atmospheric CO2 concentrations. Physiol. Plant. 89: 570–576 https://doi.org/10.1111/j.1399-3054.1993.tb05215.x ,
- Coviella, C., and and J. Trumble. 1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conserv. Biol. 13: 700–712 https://doi.org/10.1046/j.1523-1739.1999.98267.x ,
- Cox, F.R.. 1979. Effect of temperature treatment on peanut vegetative and fruit growth. Peanut Sci. 6: 14–17 https://doi.org/10.3146/i0095-3679-6-1-4
10.3146/i0095-3679-6-1-4 Google Scholar
- Crafts-Brandner, S.J., and and M.E. Salvucci. 2002. Sensitivity of photosynthesis in a C-4 plant, maize, to heat stress. Plant Physiol. 129: 1773–1780 https://doi.org/10.1104/pp.002170 ,
- Craufurd, P.Q., P.V.V. Prasad, and and V.G. Kakani. 2003. Heat tolerance in groundnut. Field Crops Res. 80: 63–77 https://doi.org/10.1016/S0378-4290(02)00155-7 ,
- Dentener, F., D. Stevenson, J. Cofala, R. Mechler, M. Amann, P. Bergamaschi, F. Raes, and and R. Derwent. 2005. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030. Atmos. Chem. Phys. 5: 1731–1755 https://doi.org/10.5194/acp-5-1731-2005 ,
- Dermody, O., S.P. Long, and and E.H. DeLucia. 2006. How does elevated CO2 or ozone affect the leaf-area index of soybean when applied independently? New Phytologist 169: 145–155 https://doi.org/10.1111/j.1469-8137.2005.01565.x ,
- Dessler, A., and and S.C. Sherwood. 2009. A matter of humidity. Science (Washington, DC) 323: 1020–1021 https://doi.org/10.1126/science.1171264
- Donnelly, A., M.B. Jones, J.I. Burke, and and B. Schnieders. 2000. Elevated CO2 provides protection from O3 induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat (Triticum aestivum L., cv. ‘Minaret’). Agric. Ecosyst. Environ. 80: 159–168 https://doi.org/10.1016/S0167-8809(00)00137-7 ,
- Downs, R.W.. 1972. Effect of temperature on the phenology and grain yield of Sorghum bicolor. Aust. J. Agric. Res. 23: 585–594 https://doi.org/10.1071/AR9720585 ,
- Dukes, J.S., and and H.A. Mooney. 2000. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14: 135–139 https://doi.org/10.1016/S0169-5347(98)01554-7 ,
- Dupuis, L., and and C. Dumas. 1990. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive systems. Plant Physiol. 94: 665–670 https://doi.org/10.1104/pp.94.2.665 ,
- Edwards, G.E., and and N.R. Baker. 1993. Can CO2 assimilation in maize be predicted accurately from chlorophyll fluorescence analysis. Photosynth. Res. 37: 89–102 https://doi.org/10.1007/BF02187468 ,
- Egli, D.B., and and I.F. Wardlaw. 1980. Temperature response of seed growth characteristics of soybean. Agron. J. 72: 560–564 https://doi.org/10.2134/agronj1980.00021962007200030036x ,
- Elagoz, V., and and W.J. Manning. 2005. Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic differences, morphological characteristics, and the chamber environment. Environ. Pollut. 136: 371–383 https://doi.org/10.1016/j.envpol.2005.01.021 ,
- Erbs, M., R. Manderscheid, G. Jansen, S. Seddig, A. Pacholski, and and H.-J. Weigel. 2010. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters of wheat and barley grown in a crop rotation. Agric. Ecosyst. Environ. 136: 59–68 https://doi.org/10.1016/j.agee.2009.11.009 ,
- Field, C.B., R.B. Jackson, and and H.A. Mooney. 1995. Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ. 18: 1214–1225 https://doi.org/10.1111/j.1365-3040.1995.tb00630.x ,
- Finnan, J.M., A. Donnelly, J.L. Burke, and and M.B. Jones. 2002. The effects of elevated concentrations of carbon dioxide and ozone on potato (Solanum tuberosum L.) yield. Agric. Ecosyst. Environ. 88: 11–22 https://doi.org/10.1016/S0167-8809(01)00158-X ,
- Fonseca, A.E., and and M.E. Westgate. 2005. Relationship between desiccation and viability of maize pollen. Field Crops Res. 94: 114–125 https://doi.org/10.1016/j.fcr.2004.12.001 ,
- Goho, A.. 2004. Gardeners anticipate climate change. Am. Gardener 83: 36–41
- Goudriaan, J., and and M.H. Unsworth. 1990. Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources. p. 111–130. In B.A. Kimball et al. (ed.) Impact of carbon dioxide, trace gases, and climate change on global agriculture. ASA Spec. Publ. 53. ASA, Madison, WI.
- Grimm, S.S., J.W. Jones, K.J. Boote, and and D.C. Herzog. 1994. Modeling the occurrence of reproductive stages after flowering for four soybean cultivars. Agron. J. 86: 31–38 https://doi.org/10.2134/agronj1994.00021962008600010007x ,
- Grimm, S.S., J.W. Jones, K.J. Boote, and and J.D. Hesketh. 1993. Parameter estimation for predicting flowering date of soybean cultivars. Crop Sci. 33: 137–144 https://doi.org/10.2135/cropsci1993.0011183X003300010025x ,
- Gross, Y., and and J. Kigel. 1994. Differential sensitivity to high temperature of stages in the reproduction development of common beans (Phaseolus vulgaris L.). Field Crops Res. 36: 201–212 https://doi.org/10.1016/0378-4290(94)90112-0 ,
- Hall, A.E.. 1992. Breeding for heat tolerance. p. 129–168. In J. Janick (ed.) Plant breeding reviewers. Vol. 10. John Wiley & Sons, New York.
- Hamilton, J.G., O. Dermody, M. Aldea, A.R. Zangerl, A. Rogers, M.R. Berenbaum, and and E.H. DeLucia. 2005. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ. Entomol. 34: 479–485 https://doi.org/10.1603/0046-225X-34.2.479 ,
- Harrington, R., R. Fleming, and and I.P. Woiwood. 2001. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 3: 233–240 https://doi.org/10.1046/j.1461-9555.2001.00120.x
- Hatfield, J.L., K.J. Boote, P. Fay, L. Hahn, C. Izaurralde, B.A. Kimball, T. Mader, J. Morgan, D. Ort, W. Polley, A. Thomson, and and D. Wolfe. 2008. Agriculture. In The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. U.S. Climate Change Science Program and the Subcommittee on Global Change Res., Washington, DC.
- Hatfield, J.L., and and J.H. Prueger. 2004. Impact of changing precipitation patterns on water quality. J. Soil Water Conserv. 59: 51–58 ,
- Hatfield, J.L., J.H. Prueger, and and W.P. Kustas. 2004. Remote sensing of dryland crops. p. 531–568. In S.L. Ustin (ed.) Remote sensing for natural resource management and environmental monitoring. Manual of remote sensing, Vol. 4. 3rd ed. John Wiley, Hoboken, NJ.
- Hayhoe, K., C. Wake, T. Huntington, L. Luo, M. Schwartz, J. Sheffield, E. Wood, B. Anderson, J. Bradbury, A. Degaetano, T. Troy, and and D. Wolfe. 2007. Past and future changes in climate and hydrological indicators in the U.S. Clim. Dynam. 28: 381–407 https://doi.org/10.1007/s00382-006-0187-8
- Heagle, A.S.. 1989. Ozone and crop yield. Annu. Rev. Phytopathol. 27: 397–423 https://doi.org/10.1146/annurev.py.27.090189.002145 ,
- Herrero, M.P., and and R.R. Johnson. 1980. High temperature stress and pollen viability in maize. Crop Sci. 20: 796–800 https://doi.org/10.2135/cropsci1980.0011183X002000060030x ,
- Hesketh, J.D., D.L. Myhre, and and C.R. Willey. 1973. Temperature control of time intervals between vegetative and reproductive events in soybeans. Crop Sci. 13: 250–254 https://doi.org/10.2135/cropsci1973.0011183X001300020030x ,
- Hlavinka, P., M. Trnka, D. Semeradova, M. Dubrovsky, Z. Zalud, and and M. Mozny. 2009. Effect of drought on yield variability of key crops in Czech republic. Agric. For. Meteorol. 149: 431–442 https://doi.org/10.1016/j.agrformet.2008.09.004 ,
- Hodges, T., and and J.T. Ritchie. 1991. The CERES-Wheat phenology model. p. 115–131. In T. Hodges (ed.) Predicting crop phenology. CRC Press, Boca Raton, FL.
- Horie, T., J.T. Baker, H. Nakagawa, T. Matsui, and and H.Y. Kim. 2000. Crop ecosystem responses to climatic change: Rice. p. 81–106. In K.R. Reddy and H.F. Hodges (ed.) Climate change and global crop productivity. CAB Int., New York.
- Hui, D., Y. Luo, W. Cheng, J.S. Coleman, D. Johnson, and and D.A. Sims. 2001. Canopy radiation- and water-use efficiencies as affected by elevated CO2 Glob. Change Biol. 7: 75–91 https://doi.org/10.1046/j.1365-2486.2001.00391.x ,
- Hunsaker, D.J., G.R. Hendrey, B.A. Kimball, K.F. Lewin, J.R. Mauney, and and J. Nagy. 1994. Cotton evapotranspiration under field conditions with CO2 enrichment and variable soil moisture regimes. Agric. For. Meteorol. 70: 247–258 https://doi.org/10.1016/0168-1923(94)90061-2 ,
- Hunsaker, D.J., B.A. Kimball, P.J. Pinter Jr., R.L. LaMorte, and and G.W. Wall. 1996. Carbon dioxide enrichment and irrigation effects on wheat evapotranspiration and water use efficiency. Trans. ASAE 39: 1345–1355
- Hunsaker, D.J., B.A. Kimball, P.J. Pinter Jr., G.W. Wall, R.L. LaMorte, F.J. Adamsen, S.W. Leavitt, T.W. Thompson, and and T.J. Brooks. 2000. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agric. For. Meteorol. 104: 85–100 https://doi.org/10.1016/S0168-1923(00)00157-X ,
- Imin, N., T. Kerim, B.G. Rolfe, and and J.J. Weinman. 2004. Effect of early cold stress on the maturation of rice anthers. Proteomics 4: 1873–1882 https://doi.org/10.1002/pmic.200300738 ,
- IPCC. 2001. In J.T. Houghton et al. (ed.) Climate change 2001: The scientific basis, contribution from Working Group I to the third assessment report, Inter-governmental Panel for Climate Change. Cambridge Univ. Press, Cambridge, UK.
- IPCC. 2007. In R.K. Pachauri and A. Reisinger (ed.) Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
- Izaurralde, R.C., N.J. Rosenberg, R.A. Brown, and and A.M. Thomson. 2003. Integrated assessment of Hadley Centre climate change projections on water resources and agricultural productivity in the conterminous United States. II. Regional agricultural productivity in 2030 and 2095. Agric. For. Meteorol. 117: 97–122 https://doi.org/10.1016/S0168-1923(03)00024-8 ,
- Jifon, J.L., and and D.W. Wolfe. 2005. High temperature-induced sink limitation alters growth and photosynthetic acclimation to elevated CO2 in beans (Phaseolus vulgaris L.). J. Am. Soc. Hortic. Sci. 130: 515–520 ,
- Jones, P., J.W. Jones, and L.H. Allen Jr., 1985. Seasonal carbon and water balances of soybeans grown under stress treatments in sunlit chambers. Trans. ASAE 28: 2021–2028
- Jones, R.J., S. Ouattar, and and R.K. Crookston. 1984. Thermal environment during endosperm cell division and grain filling in maize: Effects on kernel growth and development in vitro. Crop Sci. 24: 133–137 https://doi.org/10.2135/cropsci1984.0011183X002400010031x ,
- Kakani, V.G., K.R. Reddy, S. Koti, T.P. Wallace, P.V.V. Prasad, V.R. Reddy, and and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. (London) 96: 59–67 https://doi.org/10.1093/aob/mci149
- T.R. Karl, J.M. Melillo, and T.C. Peterson (ed.). 2009. Global climate change impacts in the United States. Cambridge Univ. Press, New York.
- Kim, H.Y., T. Horie, H. Nakagawa, and and K. Wada. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect of yield and its component of Akihikari rice. Jpn. J. Crop. Sci. 65: 644–651
- Kimball, B.A.. 1983. Carbon dioxide and agricultural yield. An assemblage of 430 prior observations. Agron. J. 75: 779–788 https://doi.org/10.2134/agronj1983.00021962007500050014x ,
- Kimball, B.A.. 2007. Global change and water resources. p. 627–654. In R.J. Lascano and R.E. Sojka (ed.) Irrigation of agricultural crops. Agron. Monogr. 30. 2nd ed. ASA, CSSA, and SSSA, Madison, WI.
10.2134/agronmonogr30.2ed.c17 Google Scholar
- Kimball, B.A.. 2010. Lessons from FACE: CO2 Effects and interactions with water, nitrogen, and temperature. p. 87–107. In D. Hillel and C. Rosenzweig (ed.) Handbook of climate change and agroecosystems: Impacts, adaptation, and mitigation. Imperial College Press, London UK.
- Kimball, B.A., and and S.B. Idso. 1983. Increasing atmospheric CO2: Effects on crop yield, water use, and climate. Agric. Water Manage. 7: 55–72 https://doi.org/10.1016/0378-3774(83)90075-6 ,
- Kimball, B.A., K. Kobayashi, and and M. Bindi. 2002. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 77: 293–368 https://doi.org/10.1016/S0065-2113(02)77017-X
- Kimball, B.A., R.L. LaMorte, P.J. Pinter Jr., G.W. Wall, D.J. Hunsaker, F.J. Adamsen, S.W. Leavitt, T.L. Thompson, A.D. Matthias, and and T.J. Brooks. 1999. Free-air CO2 enrichment (FACE) and soil nitrogen effects on energy balance and evapotranspiration of wheat. Water Resour. Res. 35: 1179–1190 https://doi.org/10.1029/1998WR900115 ,
- Kimball, B.A., and and J.R. Mauney. 1993. Response of cotton to varying CO2, irrigation, and nitrogen: Yield and growth. Agron. J. 85: 706–712 https://doi.org/10.2134/agronj1993.00021962008500030035x ,
- Kimball, B.A., C.F. Morris, P.J. Pinter Jr., G.W. Wall, D.J. Hunsaker, F.J. Adamsen, R.L. LaMorte, S.W. Leavitt, T.L. Thompson, A.D. Matthias, and and T.J. Brooks. 2001. Elevated CO2, drought and soil nitrogen effects on wheat grain quality. New Phytol. 150: 295–303 https://doi.org/10.1046/j.1469-8137.2001.00107.x ,
- Kimball, B.A., P.J. Pinter, R.L. Garcia, R.L. LaMorte, G.W. Wall, D.J. Hunsaker, G. Wechsung, F. Wechsung, and and T. Kartschall. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Glob. Change Biol. 1: 429–442 https://doi.org/10.1111/j.1365-2486.1995.tb00041.x ,
- King, K.M., and and D.H. Greer. 1986. Effects of carbon dioxide enrichment and soil water on maize. Agron. J. 78: 515–521 https://doi.org/10.2134/agronj1986.00021962007800030025x ,
- Kiniry, J.R., and and R. Bonhomme. 1991. Predicting maize phenology. p. 115–131. In T. Hodges (ed.) Predicting crop phenology. CRC Press, Boca Raton, FL.
- Ko, J., L. Ahuja, B. Kimball, S. Anapalli, L. Ma, T.R. Green, A.C. Ruane, G.W. Wall, P. Pinter, and and D.A. Bader. 2010. Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agric. For. Meteorol. 150: 1331–1346 https://doi.org/10.1016/j.agrformet.2010.06.004 ,
- Kobza, J., and and G.E. Edwards. 1987. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol. 83: 69–74 https://doi.org/10.1104/pp.83.1.69 ,
- Kucharik, C.J., and and S.P. Serbin. 2008. Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ. Res. Lett. 3: 1–10
- Laing, D.R., P.G. Jones, and and J.H. Davis. 1984. Common bean (Phaseolus vulgaris L.). p. 305–351. In P.R. Goldsworthy and N.M. Fisher (ed.) The physiology of tropical field crops. John Wiley & Sons, New York.
- Laux, P., G. Jackel, R.M. Tingem, and and H. Kunstmann. 2010. Impact of climate change on agricultural productivity under rainfed conditions in Cameroon-A method to improved attainable crop yields by planting date adaptations. Agric. For. Meteorol. 150: 1258–1271 https://doi.org/10.1016/j.agrformet.2010.05.008 ,
- Lawlor, D.W., and and R.A.C. Mitchell. 2000. Crop ecosystem responses to climatic change: Wheat. p. 57–80. In K.R. Reddy, and H.F. Hodges (ed.) Climate change and global crop productivity. CAB Int., New York.
10.1079/9780851994390.0057 Google Scholar
- Lawson, T., J. Craigon, C.R. Black, J.J. Colls, G. Landon, and and J.D.B. Weyers. 2002. Impact of elevated CO2 and O3 on gas exchange parameters and epidermal characteristics in potato (Solanum tuberosum L.) 53: 737–746.
- Leakey, A.D.B., M. Uribelarrea, E.A. Ainsworth, S.L. Naidu, A. Rogers, D.R. Ort, and and S.P. Long. 2006. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 140: 779–790 https://doi.org/10.1104/pp.105.073957 ,
- Lejeune, K.R., J.L. Griffin, D.B. Reynolds, and and A.M. Saxton. 1994. Itchgrass (Rottboellia cochinchinensis) interference in soybean (Glycine max). Weed Technol. 8: 733–737 ,
- Lencse, R.J., and and J.L. Griffin. 1991. Itchgrass (Rottboellia cochinchinensis) interference in sugarcane (Saccharum sp.). Weed Technol. 5: 396–399 ,
- Lettenmaier, D.P., D. Major, L. Poff, and and S. Running. 2008. Water resources. p. 362. In The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. U.S. Climate Change Science Program and the Subcommittee on Global Change Res., Washington, DC.
- Lobell, D.B.. 2007. Changes in diurnal temperature and national cereal yields. Agric. For. Meteorol. 145: 229–238 https://doi.org/10.1016/j.agrformet.2007.05.002 ,
- Lobell, D.B., and and C.B. Field. 2007. Global scale climate-crop yield relationships and the impact of recent warming. Environ. Res. Lett. 2: 1–7
- Long, S.P.. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ. 14: 729–739 https://doi.org/10.1111/j.1365-3040.1991.tb01439.x ,
- Long, S.P., E.A. Ainsworth, A.D.B. Leakey, J. Nosberger, and and D.R. Ort. 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science (Washington, DC) 213: 1918–1921
- Magliulo, V., M. Bindi, and and G. Rana. 2003. Water use of irrigated potato (Solanum tuberosum L.) grown under free air carbon dioxide enrichment in central Italy. Agric. Ecosys. Environ. 97: 65–80 https://doi.org/10.1016/S0167-8809(03)00135-X
- Maiti, R.K.. 1996. Sorghum science. Science Publ., Lebanon, NH.
- Malcolm, J.R., A. Markham, R.P. Neilson, and and M. Garaci. 2002. Estimated migration rates under scenarios of global climate change. J. Biogeography 29: 835–849 https://doi.org/10.1046/j.1365-2699.2002.00702.x ,
- Maroco, J.P., G.E. Edwards, and and M.S.B. Ku. 1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta 210: 115–125 https://doi.org/10.1007/s004250050660 ,
- Matsui, T., O.S. Namuco, L.H. Ziska, and and T. Horie. 1997. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 51: 213–219 https://doi.org/10.1016/S0378-4290(96)03451-X ,
- Matsushima, S., T. Tanaka, and and T. Hoshino. 1964. Analysis of yield determining process and its application to yield-prediction and culture improvement of lowland rice. LXX. Combined effect of air temperature and water temperature at different stages of growth on the grain yield and its components of lowland rice. Proc. Crop Sci. Soc. Jpn. 33: 53–58
10.1626/jcs.33.53 Google Scholar
- Medlyn, B.E., C.V.M. Barton, M.S.J. Broadmeadow, R. Ceulemans, P. De Angelis, M. Forstreuter, M. Freeman, S.B. Jackson, S. Kellomaki, E. Laitat, A. Rey, P. Roberntz, B.D. Sigurdsson, J. Strassemeyer, K. Wang, P.S. Curtis, and and P.G. Jarvis. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol. 149: 247–264 https://doi.org/10.1046/j.1469-8137.2001.00028.x ,
- Miller, J.E., A.S. Heagle, and and W.A. Pursley. 1998. Influence of ozone stress on soybean response to carbon dioxide enrichment: II. Biomass and development. Crop Sci. 38: 122–128
- Mills, G., G. Ball, F. Hayes, J. Fuhrer, L. Skarby, B. Gimeno, L. De Temmerman, and and A. Heagle. 2000. Development of a multi-factor model for predicting the effects of ambient ozone on the biomass of white clover. Environ. Pollut. 109: 533–542 https://doi.org/10.1016/S0269-7491(00)00057-9 ,
- Mishra, V., and and K.A. Cherkauer. 2010. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteorol. 150: 1030–1045 https://doi.org/10.1016/j.agrformet.2010.04.002 ,
- Montaigne, F.. 2004. The heat is on: Eco-signs. Natl. Geographic 206: 34–55
- Morgan, P.B., E.A. Ainsworth, and and S.P. Long. 2003. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 26: 1317–1328 https://doi.org/10.1046/j.0016-8025.2003.01056.x ,
- Morgan, P.B., C.J. Bernacchi, D.R. Ort, and and S.P. Long. 2004. An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol. 135: 2348–2357 https://doi.org/10.1104/pp.104.043968 ,
- Morgan, P.B., T.A. Mies, G.A. Bollero, R.L. Nelson, and and S.P. Long. 2006. Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol. 170: 333–343 https://doi.org/10.1111/j.1469-8137.2006.01679.x ,
- Morison, J.I.L.. 1987. Intercellular CO2 concentration and stomatal response to CO2. p. 229–251. In E. Zeiger et al. (ed.) Stomatal function. Stanford Univ. Press, Stanford, CA.
- Muchow, R.C., T.R. Sinclair, and and J.M. Bennett. 1990. Temperature and solar-radiation effects on potential maize yield across locations. Agron. J. 82: 338–343 https://doi.org/10.2134/agronj1990.00021962008200020033x ,
- Noormets, A., A. Sôber, E.J. Pell, R.E. Dickson, G.K. Podila, J. Sôber, J.G. Isebrands, and and D.F. Karnosky. 2001. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3 Plant Cell Environ. 24: 327–336 https://doi.org/10.1046/j.1365-3040.2001.00678.x ,
- Oberhuber, W., and and G.E. Edwards. 1993. Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol. 101: 507–512 ,
- Ong, C.K.. 1986. Agroclimatological factors affecting phenology of groundnut. In Agrometeorology of Groundnut. Proc. of an Int. Symp. 21–26 Aug. 1985. ICRISAT Sahelian Center, Niamey, Niger. ICRISAT, Patancheru, India.
- Ortiz, R., K.D. Sayre, B. Govaerts, R. Gupta, G.V. Subbarao, T. Ba, D. Hodson, J.M. Dixon, J.I. Ortiz-Monasterio, and and M. Reynolds. 2008. Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 126: 46–58 https://doi.org/10.1016/j.agee.2008.01.019 ,
- Ottman, M.J., B.A. Kimball, P.J. Pinter, G.W. Wall, R.L. Vanderlip, S.W. Leavitt, R.L. LaMorte, A.D. Matthias, and and T.J. Brooks. 2001. Elevated CO2 increases sorghum biomass under drought conditions. New Phytol. 15: 261–273
- Pan, D.. 1996. Soybean responses to elevated temperature and doubled CO2 Ph.D. diss. Univ. of Florida, Gainesville.
- Patterson, D.T.. 1993. Implications of global climate change for impact of weeds, insects and plant diseases. Int. Crop Sci. 1: 273–280
- Patterson, D.T.. 1995a. Weeds in a changing climate. Weed Sci. 43: 685–701 ,
- Patterson, D.T.. 1995b. Effects of environmental stress on weed/crop interactions. Weed Sci. 43: 483–490 ,
- Patterson, D.T., C.R. Meyer, E.P. Flint, and P.C. Quimby Jr., 1979. Temperature responses and potential distribution of itchgrass (Rottboellia exaltata) in the United States. Weed Sci. 27: 77–82 ,
- Patterson, D.T., J.K. Westbrook, R.J.C. Joyce, P.D. Lingren, and and J. Rogasik. 1999. Weeds, insects and diseases. Clim. Change 43: 711–727 https://doi.org/10.1023/A:1005549400875 ,
- Paulsen, G.M.. 1994. High temperature responses of crop plants. p. 365–389. In K.J. Boote et al. (ed.) Physiology and determination of crop yield. ASA, CSSA, and SSSA, Madison, WI.
- Peng, S., J. Huang, J.E. Sheehy, R.C. Lanza, R.M. Visperas, X. Zhong, G.S. Centeno, G.S. Khush, and and K.G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Academy Sci. 101: 9971–9975 https://doi.org/10.1073/pnas.0403720101
- Pettigrew, W.T.. 2008. The effect of higher temperature on cotton lint yield production and fiber quality. Crop Sci. 48: 278–285 https://doi.org/10.2135/cropsci2007.05.0261 ,
- Pickering, N.B., J.W. Jones, and and K.J. Boote. 1995. Adapting SOYGRO V5.42 for prediction under climate change conditions. p. 77–98. In C. Rosenzweig et al. (ed.) Climate change and Agriculture: Analysis of potential international impacts. ASA Spec. Publ. 59. ASA, CSSA, and SSSA, Madison, WI.
- Piper, E.L., K.J. Boote, and and J.W. Jones. 1998. Evaluation and improvement of crop models using regional cultivar trial data. Appl. Eng. Agric. 14: 435–446
10.13031/2013.19391 Google Scholar
- Prasad, P.V.V., K.J. Boote, and L.H. Allen Jr., 2006a. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum Sorghum bicolor (L.) Moench are more severe at elevated carbon dioxide due to high tissue temperature. Agric. For. Meteorol. 139: 237–251 https://doi.org/10.1016/j.agrformet.2006.07.003 ,
- Prasad, P.V.V., K.J. Boote, L.H. Allen Jr., J.E. Sheehy, and and J.M.G. Thomas. 2006b. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95: 398–411 https://doi.org/10.1016/j.fcr.2005.04.008 ,
- Prasad, P.V.V., K.J. Boote, L.H. Allen Jr., and and J.M.G. Thomas. 2002. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol. 8: 710–721 https://doi.org/10.1046/j.1365-2486.2002.00508.x ,
- Prasad, P.V.V., K.J. Boote, L.H. Allen Jr., and and J.M.G. Thomas. 2003. Supra-optimal temperatures are detrimental to peanut (Arachis hypogaea L) reproductive processes and yield at ambient and elevated carbon dioxide. Glob. Change Biol. 9: 1775–1787 https://doi.org/10.1046/j.1365-2486.2003.00708.x ,
- Prasad, P.V.V., P.Q. Craufurd, V.G. Kakani, T.R. Wheeler, and and K.J. Boote. 2001. Influence of high temperature during pre- and postanthesis stages of floral development on fruit-set and pollen germination in peanut. Aust. J. Plant Physiol. 28: 233–240
- Prasad, P.V.V., S.R. Pisipati, Z. Ristic, U. Bukovnik, and and A.K. Fritz. 2008. Effect of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 48: 2372–2380 https://doi.org/10.2135/cropsci2007.12.0717 ,
- Pushpalatha, P., P. Sharma-natu, and and M.C. Ghildiyal. 2008. Photosynthetic response of wheat cultivar to long-term exposure to elevated temperature. Photosynthetica 46: 552–556 https://doi.org/10.1007/s11099-008-0093-x ,
10.1007/s11099-008-0093-x Google Scholar
- Reddy, K.R., G.H. Davidonis, A.S. Johnson, and and B.T. Vinyard. 1999. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron. J. 91: 851–858 https://doi.org/10.2134/agronj1999.915851x ,
- Reddy, K.R., H.F. Hodges, and and B.A. Kimball. 2000. Crop ecosystem responses to climatic change: Cotton. p. 161–187. In K.R. Reddy and H. F. Hodges (ed.) Climate change and global crop productivity. CAB Int., New York.
- Reddy, K.R., H.F. Hodges, and and J.M. McKinion. 1995a. Carbon dioxide and temperature effects on Pima cotton growth. Agric. Ecosyst. Environ. 54: 17–29 https://doi.org/10.1016/0167-8809(95)00593-H ,
- Reddy, K.R., H.F. Hodges, and and J.M. McKinion. 1997. A comparison of scenarios for the effect of global climate change on cotton growth and yield. Aust. J. Plant Physiol. 24: 707–713 https://doi.org/10.1071/PP96138
- Reddy, K.R., H.F. Hodges, J.M. McKinion, and and G.W. Wall. 1992a. Temperature effects on Pima cotton growth and development. Agron. J. 84: 237–243 https://doi.org/10.2134/agronj1992.00021962008400020022x ,
- Reddy, K.R., H.F. Hodges, and and V.R. Reddy. 1992b. Temperature effects on cotton fruit retention. Agron. J. 84: 26–30 https://doi.org/10.2134/agronj1992.00021962008400010006x ,
- Reddy, K.R., P.V. Vara Prasad, and and V.G. Kakani. 2005. Crop responses to elevated carbon dioxide and interactions with temperature: Cotton. J. Crop Improv. 13: 157–191 https://doi.org/10.1300/J411v13n01_08
10.1300/J411v13n01_08 Google Scholar
- Reddy, V.R., D.N. Baker, and and H.F. Hodges. 1991. Temperature effects on cotton canopy growth, photosynthesis, and respiration. Agron. J. 83: 699–704 https://doi.org/10.2134/agronj1991.00021962008300040010x ,
- Reddy, V.R., K.R. Reddy, and and H.F. Hodges. 1995b. Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water use efficiency. Field Crops Res. 41: 13–23 https://doi.org/10.1016/0378-4290(94)00104-K ,
- Rejmanek, M.. 1996. A theory of seed plant invasiveness: The first sketch. Biol. Conserv. 78: 171–181 https://doi.org/10.1016/0006-3207(96)00026-2 ,
- Ritchie, J.T.. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 8: 1204–1213 https://doi.org/10.1029/WR008i005p01204 ,
- Rosenzweig, C., F.N. Tubiello, R. Goldberg, E. Mills, and and J. Bloomfield. 2002. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 12: 197–202 https://doi.org/10.1016/S0959-3780(02)00008-0
- Rudorff, B.F.T., C.L. Mulchi, C.S.T. Daughtry, and and E.H. Lee. 1996. Growth, radiation use efficiency, and canopy reflectance of wheat and corn grown under elevated ozone and carbon dioxide atmospheres. Remote Sens. Environ. 55: 163–173 https://doi.org/10.1016/0034-4257(95)00208-1 ,
- Runge, E.C.A.. 1968. Effect of rainfall and temperature interactions during the growing season on corn yield. Agron. J. 60: 503–507 https://doi.org/10.2134/agronj1968.00021962006000050018x ,
- Salem, M.A., V.G. Kakani, S. Koti, and and K.R. Reddy. 2007. Pollen-based screening of soybean genotypes for high temperature. Crop Sci. 47: 219–231 https://doi.org/10.2135/cropsci2006.07.0443 ,
- Sasek, T.W., and and B.R. Strain. 1990. Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the USA. Clim. Change 16: 31–51 https://doi.org/10.1007/BF00137345 ,
- Satake, T., and and S. Yoshida. 1978. High temperature-induced sterility in indica rice at flowering. Jpn. J. Crop. Sci. 47: 6–17
- Sau, F., K.J. Boote, W.M. Bostick, J.W. Jones, and and M.I. Minguez. 2004. Testing and improving evapotranspiration and soil water balance of the DSSAT crop models. Agron. J. 96: 1243–1257 https://doi.org/10.2134/agronj2004.1243 ,
- Sayfa, P., A. Saha, and and N.K. Singh. 2010. Screening for low temperature tolerance in boro rice. Int. Rice Res. Notes 35: 1–4
- Schlenker, W., and and M.J. Roberts. 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 106: 15594–15598 https://doi.org/10.1073/pnas.0906865106
- Schoper, J.B., R.J. Lambert, B.L. Vasilas, and and M.E. Westgate. 1987. Plant factors controlling seed set in maize. Plant Physiol. 83: 121–125 https://doi.org/10.1104/pp.83.1.121
- Schwartz, M.D., R. Ahas, and and A. Aasa. 2006. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 12: 343–351 https://doi.org/10.1111/j.1365-2486.2005.01097.x ,
- Sexton, P.J., J.W. White, and and K.J. Boote. 1994. Yield-determining processes in relation to cultivar seed size of common bean. Crop Sci. 34: 84–91 https://doi.org/10.2135/cropsci1994.0011183X003400010015x ,
- Snyder, A.M.. 2000. The effects of elevated carbon dioxide and temperature on two cultivars of rice. M.S. thesis. Univ. of Florida, Gainesville.
- Sofield, I., L.T. Evans, M.G. Cook, and and I.F. Wardlaw. 1977. Factors influencing the rate and duration of grain filling in wheat. Aust. J. Plant Physiol. 4: 785–797 https://doi.org/10.1071/PP9770785
10.1071/PP9770785 Google Scholar
- Sofield, I., L.T. Evans, and and I.F. Wardlaw. 1974. The effects of temperature and light on grain filling in wheat. p. 909–915. In R.L. Bieleski et al. (ed.) Mechanisms of regulation of plant growth. Bull. 12. R. Soc. New Zealand, Wellington.
- Stanhill, G., and and S. Cohen. 2001. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteorol. 107: 255–278 https://doi.org/10.1016/S0168-1923(00)00241-0 ,
- Stivers, L.. 1999. Crop profiles for corn (sweet) in New York. Available at http://www.ipmcenters.org/cropprofiles/docs/nycorn-sweet.pdf (verified 15 Dec. 2010). NSF Ctr. for Integrated Pest Manage., North Carolina State Univ., Raleigh.
- Stockle, C.O., P.T. Dyke, J.R. Williams, C.A. Jones, and and N.J. Rosenberg. 1992a. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part II–Sensitivity analysis at three sites in the Midwestern USA. Agric. Syst. 38: 239–256 https://doi.org/10.1016/0308-521X(92)90068-Y ,
- Stockle, C.O., J.R. Williams, N.J. Rosenberg, and and C.A. Jones. 1992b. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part 1–Modification of the EPIC model for climate change analysis. Agric. Syst. 38: 225–238 https://doi.org/10.1016/0308-521X(92)90067-X ,
- Tashiro, T., and and I.F. Wardlaw. 1990. The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Aust. J. Plant Physiol. 17: 551–561 https://doi.org/10.1071/PP9900551
- Tebaldi, C., K. Hayhoe, J.M. Arblaster, and and G.E. Meehl. 2006. Climate change, Going to the extremes, An intercomparison of model simulated historical and future changes in extreme events. Clim. Change 79: 185–211 https://doi.org/10.1007/s10584-006-9051-4
- Temple, P.J.. 1990. Growth form and yield responses of 4 cotton cultivars to ozone. Agron. J. 82: 1045–1050 https://doi.org/10.2134/agronj1990.00021962008200060003x ,
- Thomas, J.M.G.. 2001. Impact of elevated temperature and carbon dioxide on development and composition of soybean seed. Ph.D. diss. Univ. of Florida, Gainesville.
- Tingey, D.T., K.D. Rodecap, E.H. Lee, W.E. Hogsett, and and J.W. Gregg. 2002. Pod development increases the ozone sensitivity of Phaseolus vulgaris. Water Air Soil Pollut. 139: 325–341 https://doi.org/10.1023/A:1015802823398 ,
- Tommasi, P.D., V. Magliulo, R. Dell'Aquila, F. Miglietta, A. Zaldei, and and G. Gaylor. 2002. Water consumption of a CO2 enriched poplar stand. Atti del Convegno, CNR-ISAFOM, Ercolano, Italy.
- Treharne, K.. 1989. The implications of the ‘greenhouse effect’ for fertilizers and agrochemicals. p. 67–78. In R.D. Bennet (ed.) The greenhouse effect and UK agriculture. Ministry of Agriculture, Fisheries and Food, London.
- Triggs, J.M., B.A. Kimball, P.J. Pinter Jr., G.W. Wall, M.M. Conley, T.J. Brooks, R.L. LaMorte, N.R. Adam, M.J. Ottman, A.D. Matthias, S.W. Leavitt, and and R.S. Cerveny. 2004. Free-air carbon dioxide enrichment (FACE) effects on energy balance and evapotranspiration of sorghum. Agric. For. Meteorol. 124: 63–79 https://doi.org/10.1016/j.agrformet.2004.01.005 ,
- Van Dingenen, R., F.J. Dentener, F. Raes, M.C. Krol, L. Emberson, and and J. Cogala. 2008. The global impact of ozone on agricultural crop yields under current and future air. Atmos. Environ. 43: 604–618 https://doi.org/10.1016/j.atmosenv.2008.10.033 ,
- Villalobos, F.J., and and E. Fereres. 1990. Evaporation measurements beneath corn, cotton, and sunflower canopies. Agron. J. 82: 1153–1159 https://doi.org/10.2134/agronj1990.00021962008200060026x ,
- Wall, G.W., T.J. Brooks, R. Adam, A.B. Cousins, B.A. Kimball, P.J. Pinter, R.L. LaMorte, L. Trigs, M.J. Ottman, S.W. Leavitt, A.D. Matthias, D.G. Williams, and and A.N. Webber. 2001. Elevated atmospheric CO2 improved sorghum plant water status by ameliorating the adverse effects of drought. New Phytol. 152: 231–248 https://doi.org/10.1046/j.0028-646X.2001.00260.x ,
- Wall, G.W., R.L. Garcia, B.A. Kimball, D.J. Hunsaker, P.J. Pinter Jr., S.P. Long, C.P. Osborne, D.L. Hendrix, F. Wechsung, G. Wechsung, S.W. Leavitt, R.L. LaMorte, and and S.B. Idso. 2006. Interactive effects of elevated carbon dioxide and drought on wheat. Agron. J. 98: 354–381 https://doi.org/10.2134/agronj2004.0089 ,
- Walther, G.R.. 2002. Ecological responses to recent climate change. Nature (London) 416: 389–395 https://doi.org/10.1038/416389a ,
- Wand, S.J.E., G.F. Midgley, M.H. Jones, and and P.S. Curtis. 1999. Responses of wild C4 and C3 grasses (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Glob. Change Biol. 5: 723–741 https://doi.org/10.1046/j.1365-2486.1999.00265.x ,
- Wang, G.. 2005. Agricultural drought in a future climate: Results from 15 gobal claimte models participating in the IPCC 4th assessment. Clim. Dyn. 25: 739–753 https://doi.org/10.1007/s00382-005-0057-9 ,
- Wang, X., and and D.L. Mauzerall. 2004. Characterizing distributions of surface ozone and its impact on grain production in China, Japan, and South Korea:1990 and 2020. Atmos. Environ. 38: 4383–4402 https://doi.org/10.1016/j.atmosenv.2004.03.067 ,
- Wassmann, R., S.V.K. Jagadish, S. Heuer, A. Ismail, E. Redona, R. Serraj, R.K. Singh, G. Howell, H. Pathak, and and K. Sumfleth. 2009. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Adv. Agron. 101: 59–122 https://doi.org/10.1016/S0065-2113(08)00802-X
- Welch, J.A., J.R. Vincent, M. Auffhammer, P.F. Moya, A. Dobermann, and and D. Dawe. 2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 107: 14562–14567 https://doi.org/10.1073/pnas.1001222107
- Wheeler, T.R., P.Q. Craufurd, R.H. Ellis, J.R. Porter, and and P.V. Vara Prasad. 2000. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82: 159–167 https://doi.org/10.1016/S0167-8809(00)00224-3 ,
- Whalen, J., M. VanGessel, B. Mulrooney, K. Everts, and and S. King. 2007. Crop profile for corn (sweet) in Delaware. Available at http://www.ipmcenters.org/cropprofiles/docs/DEsweetcorn.pdf (verified 15 Dec. 2010). Univ. of Delaware, Newark.
- Williams, J.R.. 1995. The EPIC model. p. 909–1000. In V.P. Singh (ed.) Computer models of watershed hydrology. Water Resources Publ., Highlands Ranch, CO.
- Williams, J.H., J.H.H. Wilson, and and G.C. Bate. 1975. The growth of groundnuts (Arachis hypogaea L. cv. Makulu Red) at three altitudes in Rhodesia. Rhodesian J. Agric. Res. 13: 33–43
- Wolfe, D.W.. 1994. Physiological and growth responses to atmospheric CO2 concentration. In M. Pessarakli (ed.) Handbook of plant and crop physiology. Marcel Dekker, New York.
- Wolfe, D.W., L. Ziska, C. Petzoldt, A. Seaman, L. Chase, and and K. Hayhoe. 2008. Projected change in climate thresholds in the Northeastern U.S.: Implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strategies Glob. Change 13: 555–575 https://doi.org/10.1007/s11027-007-9125-2
- Wolfe, D.W., R. Gifford, D. Hilbert, and and Y. Luo. 1998. Integration of acclimation to elevated CO2 at the whole-plant level. Glob. Change Biol. 4: 879–893 https://doi.org/10.1046/j.1365-2486.1998.00183.x ,
- Wolfe, D.W., M.D. Schwartz, A.N. Lakso, Y. Otsuki, R.M. Pool, and and N. Shaulis. 2005. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int. J. Biometeorol. 49: 303–309 https://doi.org/10.1007/s00484-004-0248-9 ,
- Wullschleger, S.D., and and R.J. Norby. 2001. Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytol. 150: 489–498 https://doi.org/10.1046/j.1469-8137.2001.00094.x ,
- Xiao, T.G., Q. Zhang, Y. Yao, H. Zhao, R. Wang, H. Bai, and and F. Zhang. 2008. Impact of recent climatic change on the yield of winter wheat at low and high altitudesin semi-arid northwestern China. Agric. Ecosyst. Environ. 127: 37–42 https://doi.org/10.1016/j.agee.2008.02.007 ,
- Yoshimoto, M., H. Oue, and and K. Kobayashi. 2005. Responses of energy balance, evapotranspiration, and water use efficiency of canopies to free-air CO2 enrichment. Agric. For. Meteorol. 133: 226–246 https://doi.org/10.1016/j.agrformet.2005.09.010 ,
- Ziska, L.H.. 2000. The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob. Change Biol. 6: 899–905 https://doi.org/10.1046/j.1365-2486.2000.00364.x ,
- Ziska, L.H.. 2003a. Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2 Weed Sci. 51: 914–918 https://doi.org/10.1614/WS-03-002R ,
- Ziska, L.H.. 2003b. Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. J. Exp. Bot. 54: 395–404 https://doi.org/10.1093/jxb/54.381.395 ,
- Ziska, L.H.. 2004. Rising carbon dioxide and weed ecology. p. 159–176. In Inderjit (ed.) Weed biology and management. Kluwer Academic Publ., the Netherlands.
10.1007/978-94-017-0552-3_7 Google Scholar
- Ziska, L.H., and and J.A. Bunce. 1997. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth. Res. 54: 199–208 https://doi.org/10.1023/A:1005947802161 ,
- Ziska, L.H., and and A. McClung. 2008. Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agron. J. 100: 1259–1263 https://doi.org/10.2134/agronj2007.0324 ,
- Ziska, L.H., J.B. Reeves, and and B. Blank. 2005. The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of cheatgrass (Bromus tectorum): Implications for fire disturbance. Glob. Change Biol. 11: 1325–1332 https://doi.org/10.1111/j.1365-2486.2005.00992.x ,
- Ziska, L.H., and and G.B. Runion. 2007. Future weed, pest and disease problems for plants. p. 262–279. In P.C.D. Newton et al. (ed.) Agroecosystems in a changing climate. CRC Press, Boston, MA.
- Ziska, L.H., J.R. Teasdale, and and J.A. Bunce. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci. 47: 608–615 ,