Journal list menu
High-Temperature Episodes with Spatial-Temporal Variation Impacted Middle-Season Rice Yield in China
Xinsu Sun
Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorZhiwei Long
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorGuangpeng Song
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorCorresponding Author
Changqing Chen
Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Corresponding author ([email protected]).Search for more papers by this authorXinsu Sun
Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorZhiwei Long
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorGuangpeng Song
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Search for more papers by this authorCorresponding Author
Changqing Chen
Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
Institute of Applied Ecology, Nanjing Agricultural Univ., Nanjing, 210095 China
Corresponding author ([email protected]).Search for more papers by this authorAll rights reserved
Abstract
Core Ideas
- Quantified high-temperature intensity, frequency, and duration as HDH index.
- High-temperature episodes between booting and flowering increased significantly.
- High-temperature episodes had a significant negative effect on rice yield.
Booting and flowering stages of rice are most sensitive to high-temperature episodes. However, the effect of spatial-temporal characteristics of high-temperature episodes on booting and flowering stages in the middle-season rice cropping region of China were less commonly found in the literature. A data analysis of historical climate and rice yield was conducted to characterize the spatial and temporal variability of high-temperature episodes between booting and flowering stages and their impact on middle-season rice grain yield in China. Three high-temperature indices, including high-temperature hours (HH), high-temperature intensity (HI), and high-temperature degree hours (HDH), were developed to quantify the high-temperature intensity, frequency, and duration based on maximum temperature records of the last 30 yr from 219 stations in the main middle-season rice cropping area of China. The HH and HI indices between booting and flowering stages increased significantly in all subregions. Especially in the Central China (CC) subregion, high-temperature episodes were more severe than those in the East China (EC) subregion and Southwest (SW) subregion. The HDH index, considering the duration and intensity of high-temperature episodes, was required to describe the correlation between high-temperature episodes and yield variability. Significant negative (p < 0.05) impacts of the variability of high-temperature episodes on the observed grain yield were found in all subregions. Rice yield would decrease by 113.9 kg ha−1, 19.1 kg ha−1, and 22.2 kg ha−1 with an HDH increase of 1.0°C·d in the EC, CC, and SW subregions, respectively. High-temperature episodes were detrimental to middle-season rice production of China.
REFERENCES
- Aggarwal, P.K., P. Batima, K.M. Brander, L. Erda, S.M. Howden, A. Kirilenko, J. Morton, J. Schmidhuber, F.N. Tubiello, M.L. Parry, O.F. Canziani, J.P. Palutikof, Van Der Linden, P.J., and C.E. Hanson. 2007. Food, fibre and forest products. Antiviral Res. 34:A79.
- Baker, J.T., Allen, L.H.Jr. 1993. Effects of CO2 and temperature on rice: A summary of five growing seasons. J. Agric. Meteorol. 48: 575–582. doi: https://doi.org/10.2480/agrmet.48.575,
10.2480/agrmet.48.575 Google Scholar
- Baker, J.T., Allen, L.H.Jr., K.J. Boote. 1992. Response of rice to carbon dioxide and temperature Agric. For. Meteorol. 60: 153–166. doi: https://doi.org/10.1016/0168-1923(92)90035-3,
- Bristow, K.L., D.G. Abrecht. 1991. Daily temperature extremes as an indicator of high temperature stress. Soil Res. 29: 377–385. doi: https://doi.org/10.1071/SR9910377,
- Butler, E.E., P. Huybers. 2013. Adaptation of US maize to temperature variations. Nat. Clim. Chang. 3: 68–72. doi: https://doi.org/10.1038/nclimate1585,
- Challinor, A.J., T.R. Wheeler, P.Q. Craufurd, F. Cat, D.B. Stephenson. 2007. Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric. Ecosyst. Environ. 119: 190–204. doi: https://doi.org/10.1016/j.agee.2006.07.009,
- Challinor, A.J., T.R. Wheeler, P.Q. Craufurd, J.M. Slingo. 2005. Simulation of the impact of high temperature stress on annual crop yields. Agric. For. Meteorol. 135: 180–189. doi: https://doi.org/10.1016/j.agrformet.2005.11.015,
- China Meteorological Administration. 2013. Daily database of Chinese surface climate. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed 20 May 2015).
- Estrella, N., T.H. Sparks, A. Menzel. 2007. Trends and temperature response in the phenology of crops in germany. Glob. Change Biol. 13: 1737–1747. doi: https://doi.org/10.1111/j.1365-2486.2007.01374.x,
- FAO. 2010. FAOSTAT database 2010, http://www.fao.org/fishery/org/GlobalRecord/en (accessed 14 July 2010).
- Gobin, A. 2012. Impact of heat and drought stress on arable crop production in Belgium. Nat Hazards Earth Sys. 12: 1911–1922. doi: https://doi.org/10.5194/nhess-12-1911-2012,
- Goldblum, D. 2009. Sensitivity of corn and soybean yield in Illinois to air temperature and precipitation: The potential impact of future climate change. Phys. Geogr. 30: 27–42 doi: https://doi.org/10.2747/0272-3646.30.1.27,
- Gourdji, S.M., A.M. Sibley, D.B. Lobell. 2013. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Lett. 8:024041. doi: https://doi.org/10.1088/1748-9326/8/2/024041
- IPCC. 2007. Summary for policymakers of climate change 2007: The physical science basis contribution of Woring Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK.
- IPCC. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge Univ. Press, Cambridge, UK.
- Jagadish, S.V.K., J. Cairns, R. Lafitte, T.R. Wheeler, A.H. Price, P.Q. Craufurd. 2010. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 50: 1633–1641. doi: https://doi.org/10.2135/cropsci2009.09.0516,
- Jiang, M., Z.Q. Jin, C.L. Shi, D.K. Ge, D.W. Zhu. 2010. Occurrence patterns of high temperature at booting and flowering stages of rice in the middle and lower reaches of Yangtze River and their impacts on rice yield. Chinese J. Ecol. 4: 006.
- Kim, H.Y., T. Horie, H. Nakagawa, K. Wada. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice. Jpn. J. Crop. Sci. 65: 634–643. doi: https://doi.org/10.1626/jcs.65.634,
- Krishnan, P., B. Ramakrishnan, K. Raja Reddy, V.R. Reddy. 2011. High temperature effects on rice growth, yield and grain quality. In: D.L. Sparks, editor, Advances in agronomy. Vol. 111. Academic Press, Burlington, Canada. p. 87–206.https://doi.org/10.1016/B978-0-12-387689-8.00004-7
- Lobell, D.B., M. Banziger, C. Magorokosho, B. Vivek. 2011a. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 1: 42–45. doi: https://doi.org/10.1038/nclimate1043
- Lobell, D.B., W. Schlenker, J. Costaroberts. 2011b. Climate trends and global crop production since 1980. Science 333: 616–620. doi: https://doi.org/10.1126/science.1204531
- Lu, P., Y. Qiang, J. Liu, X. Lee. 2006. Advance of tree-flowering dates in response to urban climate change. Agric. For. Meteorol. 138: 120–131. doi: https://doi.org/10.1016/j.agrformet.2006.04.002,
- Lu, P.L., Q. Yu, E. Wang, J.D. Liu, S.H. Xu. 2008. Effects of climatic variation and warming on rice development across south china. Clim. Res. 36: 79–88. doi: https://doi.org/10.3354/cr00729,
- Matsui, T., K. Omasa. 2002. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: Anther characteristics. Ann. Bot. (London) 89: 683–687. doi: https://doi.org/10.1093/aob/mcf112,
- Matsui, T., K. Omasa, T. Horie. 2001. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod. Sci. 4: 90–93. doi: https://doi.org/10.1626/pps.4.90,
- Menzel, A., T.H. Sparks, N. Estrella et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12: 1969–1976. doi: https://doi.org/10.1111/j.1365-2486.2006.01193.x,
- Moriondo, M., C. Giannakopoulos, M. Bindi. 2011. Climate change impact assessment: The role of climate extremes in crop yield simulation. Clim. Change 104: 679–701. doi: https://doi.org/10.1007/s10584-010-9871-0,
- Morita, S., J.I. Yonemaru, J.I. Takanashi. 2005. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann. Bot. (London) 95: 695–701. doi: https://doi.org/10.1093/aob/mci071,
- Mueller, T., N. Pusuluri, K. Mathias, P. Cornelius, R. Barnhisel, S. Shearer. 2004. Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci. Soc. Am. J. 68: 2042–2047. doi: https://doi.org/10.2136/sssaj2004.2042,
- National Bureau of Statistics of China. 2012. National data. http://data.stats.gov.cn/easyquery.htm?cn=E0103 (accessed 24 May 2015).
- National Geomatics Center of China (NGCC). 2013. Chinese basic geographic database. http://www.webmap.cn/commres.do?method=result100W (accessed 12 Mar. 2015).
- National Planting Information Network of China (NPINC). 2013. Crop database. http://202.127.42.157/moazzys/nongqing.aspx (accessed 22 June 2015).
- Nawaz, A., M. Farooq. 2017. Rice physiology In: B. Chauhan K. Jabran G. Mahajan, editors, Rice production worldwide. Springer International Publishing doi: https://doi.org/10.1007/978-3-319-47516-5_17
- Oh-e, I., K. Saitoh, T. Kuroda. 2007. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod. Sci. 10: 412–422. doi: https://doi.org/10.1626/pps.10.412,
- Peng, S., J. Huang, J.E. Sheehy, R.C. Laza, R.M. Visperas, X. Zhong, G.S. Centeno, G.S. Khush, K.G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 101: 9971–9975. doi: https://doi.org/10.1073/pnas.0403720101,
- Planton, S., M. Déqué, F. Chauvin, L. Terray. 2008. Expected impacts of climate change on extreme climate events. C. R. Geosci. 340: 564–574. doi: https://doi.org/10.1016/j.crte.2008.07.009,
- Porter, J.R., M.A. Semenov. 2005. Crop responses to climatic variation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 2021–2035. doi: https://doi.org/10.1098/rstb.2005.1752,
- Prasad, P.V.V., K.J. Boote, Allen, L.H.Jr., J.E. Sheehy, J.M.G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95: 398–411. doi: https://doi.org/10.1016/j.fcr.2005.04.008,
- Qian, B., X. Zhang, K. Chen, Y. Feng, T. O’Brien. 2010. Observed long-term trends for agroclimatic conditions in Canada. J. Appl. Meteorol. 49: 604–618. doi: https://doi.org/10.1175/2009JAMC2275.1,
- Rane, J., S. Nagarajan. 2004. High temperature index—for field evaluation of heat tolerance in wheat varieties. Agric. Syst. 79: 243–255. doi: https://doi.org/10.1016/S0308-521X(03)00075-1,
- Rang, Z.W., S.V.K. Jagadish, Q.M. Zhou, P.Q. Craufurd, S. Heuer. 2011. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ. Exp. Bot. 70: 58–65. doi: https://doi.org/10.1016/j.envexpbot.2010.08.009,
- Satake, T., S. Yoshida. 1978. High temperature induced sterility in indica rices at flowering. J. Crop Sci. 47: 6–17. doi: https://doi.org/10.1626/jcs.47.6,
- Soule, J. 1985. Glossary for horticultural crops. John Wiley & Sons, New York
- Sun, W., Y. Huang. 2011. Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agric. For. Meteorol. 151: 1193–1201. doi: https://doi.org/10.1016/j.agrformet.2011.04.009,
- Tang, H., J. Pang, G. Zhang, M. Takigawa, G. Liu, J. Zhu, K. Kobayashi. 2014. Mapping ozone risks for rice in China for years 2000 and 2020 with flux-based and exposure-based doses. Atmos. Environ. 86: 74–83. doi: https://doi.org/10.1016/j.atmosenv.2013.11.078,
- Tao, F., S. Zhang, Z. Zhang. 2013. Changes in rice disasters across China in recent decades and the meteotological and agronomic causes. Reg. Environ. Change 13: 743–759. doi: https://doi.org/10.1007/s10113-012-0357-7,
- Tao, F., M. Yokozawa, Y. Xu, Y. Hayashi, Z. Zhang. 2006. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric. For. Meteorol. 138: 82–92. doi: https://doi.org/10.1016/j.agrformet.2006.03.014,
- Thakur, P., S. Kumar, J.A. Malik, J.D. Berger, H. Nayyar. 2010. Cold stress effects on reproductive development in grain crops: An overview. Environ. Exp. Bot. 67: 429–443. doi: https://doi.org/10.1016/j.envexpbot.2009.09.004,
- Wang, P., Z. Zhang, X. Song, Y. Chen, X. Wei, P. Shi, F. Tao. 2014. Temperature variations and rice yields in China: Historical contributions and future trends. Clim. Change 124: 777–789. doi: https://doi.org/10.1007/s10584-014-1136-x,
- Wu, S., Y. Yin, D. Zheng, Q. Yang. 2006. Moisture conditions and climate trends in china during the period 1971–2000. Int. J. Climatol. 26: 193–206. doi: https://doi.org/10.1002/joc.1245,
- Yoshida, S. 1981. Fundamentals of rice crop science. Fundamentals of Rice Crop Science.
- Yunling, H., Z. Yiping. 2005. Climate change from 1960 to 2000 in the Lancang River Valley, China. Mt. Res. Dev. 25: 341–348. doi: https://doi.org/10.1659/0276-4741(2005)025[0341:CCFTIT]2.0.CO;2,
10.1659/0276-4741(2005)025[0341:CCFTIT]2.0.CO;2 Google Scholar
- Zhang, T., Y. Huang, X. Yang. 2013. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Change Biol. 19: 563–570. doi: https://doi.org/10.1111/gcb.12057,
- Zhang, Z., P. Wang, Y. Chen, X. Song, X. Wei, P. Shi. 2014. Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China. Eur. J. Agron. 59: 49–56. doi: https://doi.org/10.1016/j.eja.2014.05.008,