Journal list menu
In Situ Bioreactors and Deep Drain-Pipe Installation to Reduce Nitrate Losses in Artificially Drained Fields
Corresponding Author
Dan B. Jaynes
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Corresponding author ([email protected]).Search for more papers by this authorTom C. Kaspar
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorTom B. Moorman
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorTim B. Parkin
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorCorresponding Author
Dan B. Jaynes
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Corresponding author ([email protected]).Search for more papers by this authorTom C. Kaspar
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorTom B. Moorman
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorTim B. Parkin
National Soil Tilth Lab., USDA-ARS, 2110 University Blvd., Ames, IA, 50011
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Abstract
Nitrate in water removed from fields by subsurface drain (‘tile’) systems is often at concentrations exceeding the 10 mg N L−1 maximum contaminant level (MCL) set by the USEPA for drinking water and has been implicated in contributing to the hypoxia problem within the northern Gulf of Mexico. Because previous research shows that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage below the MCL, additional approaches are needed. In this field study, we compared the NO3 losses in tile drainage from a conventional drainage system (CN) consisting of a free-flowing pipe installed 1.2 m below the soil surface to losses in tile drainage from two alternative drainage designs. The alternative treatments were a deep tile (DT), where the tile drain was installed 0.6 m deeper than the conventional tile depth, but with the outlet maintained at 1.2 m, and a denitrification wall (DW), where trenches excavated parallel to the tile and filled with woodchips serve as additional carbon sources to increase denitrification. Four replicate 30.5- by 42.7-m field plots were installed for each treatment in 1999 and a corn–soybean rotation initiated in 2000. Over 5 yr (2001–2005) the tile flow from the DW treatment had annual average NO3 concentrations significantly lower than the CN treatment (8.8 vs. 22.1 mg N L−1). This represented an annual reduction in NO3 mass loss of 29 kg N ha−1 or a 55% reduction in nitrate mass lost in tile drainage for the DW treatment. The DT treatment did not consistently lower NO3 concentrations, nor reduce the annual NO3 mass loss in drainage. The DT treatment did exhibit lower NO3 concentrations in tile drainage than the CN treatment during late summer when tile flow rates were minimal. There was no difference in crop yields for any of the treatments. Thus, denitrification walls are able to substantially reduce NO3 concentrations in tile drainage for at least 5 yr.
References
- Baker, D.B. Sediment, nutrient, and pesticide transport in selected lower Great Lakes tributaries. EPA-905/4-88-001. USEPA, Chicago, IL. 1988
- Baker, J.L., Campbell, K.L., Johnson, H.P., and Hanway, J.J. Nitrate, phosphorus, and sulfate in subsurface drainage water. J. Environ. Qual. 1975 4 406–412. https://doi.org/10.2134/jeq1975.43406x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1975AM34800027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Baker, J.L., Colvin, T.S., Marley, S.J., and Dawelbeit, M. A point-injector applicator to improve fertilizer management. J. Appl. Eng. Agric. 1989 5 334–338
- Baker, J.L., and Johnson, H.P. Nitrate-nitrogen in tile drainage as affected by fertilization. J. Environ. Qual. 1981 10 519–522. https://doi.org/10.2134/jeq1981.104519x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981MP30500020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Benoit, G.R. Effect of agricultural management of wet sloping soil on nitrate and phosphorus in surface and subsurface water. Water Resour. Res. 1973 9 1296–1303. https://doi.org/10.1029/WR009i005p01296, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1973Q978600018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Bergström, L. Nitrate leaching and drainage from annual and perennial crops in tile-drained plots and lysimeters. J. Environ. Qual. 1987 16 11–18. https://doi.org/10.2134/jeq1987.00472425001600010003x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987F738200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Blowes, D.W., Robertson, W.D., Ptacek, C.J., and Merkley, C. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. J. Contam. Hydrol. 1994 15 207–221. https://doi.org/10.1016/0169-7722(94)90025-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MY22900004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Calvert, D.V., and Phung, H.T. Nitrate-nitrogen movement into drainage lines under different soil management systems. Proc. Soil Crop Sci. Soc. Fla. 1971 31 229–232
- Cambardella, C.A., Moorman, T.B., Jaynes, D.B., Hatfield, J.L., Parkin, T.B., Simpkins, W.W., and Karlen, D.L. Water quality in Walnut Creek watershed: Nitrate-nitrogen in soils, subsurface drainage water, and shallow groundwater. J. Environ. Qual. 1999 28 25–34. https://doi.org/10.2134/jeq1999.00472425002800010003x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000078184900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Colvin, T.S. Automated weighing and moisture sampling for a field-plot combine. Appl. Eng. Agric. 1990 6 713–714
10.13031/2013.26453 Google Scholar
- Constantin, H., and Fick, M. Influence of C-source on the denitrification rate of a high-nitrate concentrated industrial wastewater. Water Res. 1997 31 583–589. https://doi.org/10.1016/S0043-1354(96)00268-0, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WM12100024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- David, M.B., Gentry, L.E., Kovacic, D.A., and Smith, K.M. Nitrogen balance in and export from an agricultural watershed. J. Environ. Qual. 1997 26 1038–1048. https://doi.org/10.2134/jeq1997.2641038x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XN53100018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Diaz, R., Garcia, J., and Mujeriego, R. Development of a quick and low cost method for nitrate removal. K.R. Reddy and and R.H. Kadlec (ed.) Proc. 7th Int. Conf. Wetland Systems for Water Pollution Control, Lake Buena Vista, Fl. 11–16 Nov. 2000. Univ. of Florida. 2000
- Dinnes, D.L., Karlen, D.L., Jaynes, D.B., Kaspar, T.C., Hatfield, J.L., Colvin, T.S., and Cambardella, C.A. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron. J. 2002 94 153–171. https://doi.org/10.2134/agronj2002.0153, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173661400021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Drury, C.F., Tan, C.S., Gaynor, J.D., Oloya, T.O., and Welacky, T.W. Influence of controlled drainage-subirrigation on surface and tile drainage nitrate loss. J. Environ. Qual. 1996 25 317–324. https://doi.org/10.2134/jeq1996.00472425002500020016x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UB98300015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Gast, R.G., Nelson, W.W., and Randall, G.W. Nitrate accumulation in soils and loss in tile drainage following nitrogen application to continuous corn. J. Environ. Qual. 1978 7 258–262. https://doi.org/10.2134/jeq1978.00472425000700020021x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1978EX01900021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Ghodrati, M., and Jury, W.A. A field study using dyes to characterize preferential flow of water. Soil Sci. Soc. Am. J. 1990 54 1558–1563. https://doi.org/10.2136/sssaj1990.03615995005400060008x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EX69100008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Gilliam, J.W., Skaggs, R.W., and Weed, S.B. Drainage control to diminish nitrate loss from agricultural fields. J. Environ. Qual. 1979 8 137–142. https://doi.org/10.2134/jeq1979.00472425000800010030x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979GG66600030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Goolsby, D.A., and Battaglin, W.A. Occurrence, distribution, and transport of agricultural chemicals in surface waters of the Midwestern United States. p. 1–25. In D.A. Goolsby et al. (ed.) Selected papers on agricultural chemicals in water resources of the Midcontinental United States. USGS, Open File Rep. 93-418. Dep. of Interior, Washington, DC. 1993
- Goolsby, E.A., Battaglin, W.A., Lawrence, G.B., Artz, R.S., Aulenbach, B.T., Hooper, R.P., Keeney, D.R., and Stensland, F.J. Flux and sources of nutrients in the Mississippi-Atchafalaya river basin: Topic 3 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program Decision Analysis Series No. 17. NOAA Coastal Ocean Program, Silver Spring, MD. 130 pp. 1999
- Greenan, C.M., Moorman, T.B., Kaspar, T.C., Parkin, T.B., and Jaynes, D.B. Comparing carbon substrates for denitrification of subsurface drainage water. J. Environ. Qual. 2006 35 824–829. https://doi.org/10.2134/jeq2005.0247, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237576700016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Groffman, P.M., Howard, G., Gold, A.J., and Nelson, W.M. Microbial nitrate processing in shallow ground water in a riparian forest. J. Environ. Qual. 1996 25 1309–1316. https://doi.org/10.2134/jeq1996.00472425002500060020x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VW22600033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Hatfield, J.L., Jaynes, D.B., and Burkart, M.R. A watershed study to evaluate farming practices on water quality. p. 127–153. Proc. National Agricultural Management Conf., New Orleans, LA, 13–15 Dec. 1995. 1995
- Herzmann, D. Climodat reports. Iowa Environmental Mesonet, Iowa State Univ., Dep. of Agronomy, Ames, IA. Available at (verified 27 Sept. 2007). 2006
- Humenik, F.J., Smolen, M.D., and Dressing, S.A. Pollution from nonpoint sources. Environ. Sci. Technol. 1987 21 737–742. https://doi.org/10.1021/es00162a600, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987J403100005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Hunter, W.J. Use of vegetable oil in a pilot-scale denitrifying barrier. J. Contam. Hydrol. 2001 53 119–131. https://doi.org/10.1016/S0169-7722(01)00137-1, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172338800007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Jacinthe, P.A., Groffman, P.M., Gold, A.J., and Mosier, A. Patchiness in microbial nitrogen transformation in groundwater in a riparian forest. J. Environ. Qual. 1998 27 156–164. https://doi.org/10.2134/jeq1998.00472425002700010022x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000071646800022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Jaynes, D.B. Improved soil mapping using electromagnetic induction surveys. p. 169–179. In P.C. Robert et al. (ed.) Precision Agriculture. Proc. 3rd Int. Conf. on Precision Agric., Minneapolis, MN, 23–26 June 1996. ASA, CSSA, SSSA, Madison, WI. 1996. 1996
- Jaynes, D.B., Colvin, T.S., Karlen, D.L., Cambardella, C.A., and Meek, D.W. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. J. Environ. Qual. 2001 30 1305–1314. https://doi.org/10.2134/jeq2001.3041305x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174863000023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Jaynes, D.B., Hatfield, J.L., and Meek, D.W. Water quality in Walnut Creek watershed: Herbicides and nitrate in surface waters. J. Environ. Qual. 28 (1): 45–59. 1999
- Kanwar, R.S., Baker, J.L., and Baker, D.G. Tillage and split N-fertilization effects on subsurface drainage water quality and crop yields. Trans. ASAE 1988 31 453–461
- Kanwar, R.S., Colvin, T.S., and Karlen, D.L. Ridge, moldboard, chisel, and no-till effects on tile water quality beneath two cropping systems. J. Prod. Agric. 1997 10 227–234
- Kao, C.-M., and Borden, R.C. Enhanced TEX biodegradation in nutrient briquet-peat barrier system. J. Environ. Eng. 1997 123 18–24. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:1(18)
- Kapoor, A., and Viraraghavan, T. Nitrate removal from drinking water- review. J. Environ. Eng. 1997 123 371–380. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:4(371)
- Kaspar, T.C., Jaynes, D.B., Parkin, T.B., and Moorman, T.B. Effects of a rye cover crop and a permanent gamagrass strip on nitrate load in tile drainage. J. Environ. Qual. 2007 36 1503–1511. https://doi.org/10.2134/jeq2006.0468, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000249927200033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Keeney, D.R., and De Luca, T.H. Des Moines river nitrate in relation to watershed agricultural practices: 1945 versus 1980s. J. Environ. Qual. 1993 22 267–272. https://doi.org/10.2134/jeq1993.222267x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LE94700006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Kladivko, E.J., Frankenberger, J.R., Jaynes, D.B., Meek, D.W., Jenkinson, B.J., and Fausey, N.R. Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system. J. Environ. Qual. 2004 33 1803–1813. https://doi.org/10.2134/jeq2004.1803, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000223987000023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Kliewer, B.A., and Gilliam, J.W. Water table management effects on denitrification and nitrous oxide evolution. Soil Sci. Soc. Am. J. 1995 59 1694–1701. https://doi.org/10.2136/sssaj1995.03615995005900060027x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995TF74000027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Lawlor, P.A., Helmers, M.J., Baker, J.L., Melvin, S.W., and Lemke, D.W. Nitrogen application rate effects on corn yield and nitrate-nitrogen concentration and loss in subsurface drainage. ASAE Paper No. 052025. St. Joseph, MI. 2005
- Littell, R.C., Pendergast, J., and Natarajan, R. Modelling covariance structure in the analysis of repeated measures data. Stat. Med. 2000 19 1793–1819. https://doi.org/10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.0.CO;2-Q, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088063000007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Logan, T.J., Randall, G.W., and Timmons, D.R. Nutrient content of tile drainage from cropland in the North Central Region. Ohio Agric. Res. Dev. Ctr. Res. Bull.1119, Wooster, OH. 1980
- McCleaf, P.R., and Schroeder, E.D. Denitrification using a membrane-immobilized biofilm. J. Am. Water Works Assoc. 1995 87 77–86. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QM06300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.1002/j.1551-8833.1995.tb06334.x Google Scholar
- National Agricultural Statistics Service. USDA National Agricultural Statistics Service- Quick Stats: Agricultural Statistics Data Base. Available at: 8080/QuickStats/#top (verified 27 Sept. 2007). 2006
- Obenhuber, D.C., and Lowrance, R. Reduction of nitrate in aquifer microcosms by carbon additions. J. Environ. Qual. 1991 20 255–258. https://doi.org/10.2134/jeq1991.201255x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991EY99600041&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Patni, N.K., Masse, L., and Jui, P.Y. Groundwater quality under conventional and no tillage: I. Nitrate, electrical conductivity, and pH. J. Environ. Qual. 1998 27 869–877. https://doi.org/10.2134/jeq1998.00472425002700040022x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074977600020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Rabalais, N.N., Wiseman, W.J., Turner, R.E., Sen Gupta, B.K., and Dortch, Q. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 1996 19 386–407. https://doi.org/10.2307/1352458, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UX17700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Randall, G.W., Vetsch, J.A., and Huffman, J.R. Nitrate losses in subsurface drainage from a corn-soybean rotation as affected by time of nitrogen application and use of nitrapyrin. J. Environ. Qual. 2003 32 1764–1772. https://doi.org/10.2134/jeq2003.1764, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000185409500022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Reising, A.R., and Schroeder, E.D. Denitrification incorporating microporous membranes. J. Environ. Eng. 1996 122 599–604. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:7(599)
- Robbins, C.W., and Carter, D.L. Nitrate-nitrogen leached below the root zone during and following alfalfa. J. Environ. Qual. 1980 9 447–450. https://doi.org/10.2134/jeq1980.00472425000900030026x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980KD65200023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Robertson, W.D., and Cherry, J.A. In situ denitrification of septic-system nitrate using reactive porous media barriers: Field trials. Ground Water 1995 33 99–111. https://doi.org/10.1111/j.1745-6584.1995.tb00266.x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995PZ57500011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- SAS. SAS User's Guide: Statistics. Ver. 8. SAS Inst., Cary, NC. 1999
- Schipper, L.A., Barkle, G.F., Hadfield, J.C., Vojvodic-Vukovic, M., and Burgess, C.P. Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater. J. Contam. Hydrol. 2004 69 263–279. https://doi.org/10.1016/S0169-7722(03)00157-8, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000220546400006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Schipper, L., and Vojvodic-Vukovic, M. Nitrate removal from groundwater using a denitrification wall amended with sawdust: Field trial. J. Environ. Qual. 1998 27 664–668. https://doi.org/10.2134/jeq1998.273664x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073635300032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Schipper, L., and Vojvodic-Vukovic, M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol. Eng. 2000 14 269–278. https://doi.org/10.1016/S0925-8574(99)00002-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083802200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Schipper, L., and Vojvodic-Vukovic, M. Five years of nitrate removal, denitrification, and carbon dynamics in a denitrification wall. Water Res. 2001 35 3473–3477. https://doi.org/10.1016/S0043-1354(01)00052-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000170662900023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Shanableh, A., Abeysinghe, D., and Hijazi, A. Effect of cycle duration on phosphorus and nitrogen transformations in biofilters. Water Res. 1997 31 149–153. https://doi.org/10.1016/S0043-1354(96)00230-8, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WD33200018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Siemens, J., Hass, M., and Kaupenjohann, M. Dissolved organic matter induced denitrification in subsoils and aquifers? Geoderma 2003 113 253–271. https://doi.org/10.1016/S0016-7061(02)00364-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181662900006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Sison, N.F., Hanaki, K., and Matsuo, T. High loading denitrification by biological activated carbon process. Water Res. 1995 29 2776–2779. https://doi.org/10.1016/0043-1354(95)00119-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995TB43400020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Sotomayor, D., and Rice, C.W. Denitrification in soil profiles beneath grassland and cultivated soils. Soil Sci. Soc. Am. J. 1996 60 1822–1828. https://doi.org/10.2136/sssaj1996.03615995006000060030x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996WA78600029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Thalasso, F., Vallecillo, A., Garcia-Encina, P., and Fdz-Polanco, F. The use of ethane as a sole carbon source for wastewater denitrification. Water Res. 1997 31 55–60. https://doi.org/10.1016/S0043-1354(96)00228-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WD33200007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Thurman, E.M., Goolsby, D.A., Meyer, M.T., and Koplin, D.W. A reconnaissance study of herbicides and their metabolites in surface water of the Midwestern Unites States using immunoassay and gas chromatography/mass spectrometry. Environ. Sci. Technol. 1992 26 2440–2447. https://doi.org/10.1021/es00036a016, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992KA32800023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- USEPA. The national water quality inventory. The 1992 report to Congress. USEPA, Washington, DC. 1992
- van Driel, P.W., Robertson, W.D., and Merkley, L.C. Denitrification of agricultural drainage using wood-based reactors. Trans. ASABE 2006 49 565–573. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000238596400026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Volokita, M., Belkin, S., Abeliovich, A., and Soares, M.I.M. Biological denitrification of drinking water using newspaper. Water Res. 1996 30 965–971. https://doi.org/10.1016/0043-1354(95)00242-1, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UC02200023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Weier, K.L., Doran, J.W., Mosier, A.R., Power, J.F., and Peterson, T.A. Potential for bioremediation of high nitrate irrigation water via denitrification. J. Environ. Qual. 1994 23 105–110. https://doi.org/10.2134/jeq1994.231105x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MU33000016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Williford, J.W., McKeag, J.A., and Johnston, W.R. Field techniques for removing nitrates from drainage water. Proc. ASAE, 9–12 Dec. 1969, Chicago, IL, #69-733. ASAE, St. Joseph, MI. 1969
- Yeomans, J.C., Bremner, J.M., and McCarty, G.W. Denitrification capacity and denitrification potential of subsurface soils. Commun. Soil Sci. Plant Anal. 1992 23 919–927. https://doi.org/10.1080/00103629209368639, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HY31100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Zucker, L.A., and Brown, L.C. Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest. Ohio State Univ. Ext. Bull. 871. The Ohio State Univ., Columbus, OH. 1998