Journal list menu
Effect of Uranium(VI) Speciation on Simultaneous Microbial Reduction of Uranium(VI) and Iron(III)
Corresponding Author
Brandy D. Stewart
Environmental Earth System Science, Stanford Univ., Stanford, CA, 94305
Corresponding author ([email protected]).Search for more papers by this authorRichard T. Amos
Dep. of Earth and Environmental Sciences, Univ. of Waterloo, Waterloo, ON, N2L 3G1 Canada
Assigned to Associate Editor Fien DegryseSearch for more papers by this authorScott Fendorf
Environmental Earth System Science, Stanford Univ., Stanford, CA, 94305
Search for more papers by this authorCorresponding Author
Brandy D. Stewart
Environmental Earth System Science, Stanford Univ., Stanford, CA, 94305
Corresponding author ([email protected]).Search for more papers by this authorRichard T. Amos
Dep. of Earth and Environmental Sciences, Univ. of Waterloo, Waterloo, ON, N2L 3G1 Canada
Assigned to Associate Editor Fien DegryseSearch for more papers by this authorScott Fendorf
Environmental Earth System Science, Stanford Univ., Stanford, CA, 94305
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Abstract
Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO22+ and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO2 However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0–0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.
References
- Abdelouas, A., Lutze, W., and Nuttall, E. Chemical reactions of uranium in ground water at a mill tailings site. J. Contam. Hydrol. 1998 34 343–361. https://doi.org/10.1016/S0169-7722(98)00097-7, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077497600003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Allison, J.D., Brown, D.S., and Novo-Gradac, K.J. MINTEQA2/PRODEFA2: A geochemical assessment model for environmental systems. Version 3.0. User's manual, EPA/600/3-91/021. USEPA, Washington, DC. 1991
- Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., and Lovley, D.R. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 2003 69 5884–5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000185881300020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Ball, J.W., and Nordstrom, D.K. User's manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace and redox elements in natural waters. Open-File Rep. 91-183. USGS, Reston, VA. 1991
- Bernhard, G., Geipel, G., Brendler, V., and Nitsche, H. Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 1996 74 87–91. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VP90400015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Bernhard, G., Geipel, G., Reich, T., Brendler, V., Amayri, S., and Nitsche, H. Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2 (CO3)(3)(aq.) species. Radiochim. Acta 2001 89 511–518. https://doi.org/10.1524/ract.2001.89.8.511, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000170490300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Brooks, S.C., Carroll, S.L., and Jardine, P.M. Sustained bacterial reduction of Co(III)EDTA(-) in the presence of competing geochemical oxidation during dynamic flow. Environ. Sci. Technol. 1999 33 3002–3011. https://doi.org/10.1021/es990245f, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000082367400044&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., and Fendorf, S. Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 2003 37 1850–1858. https://doi.org/10.1021/es0210042, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000182635200039&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Brooks, S.C., Taylor, D.L., and Jardine, P.M. Reactive transport of EDTA-complexed cobalt in the presence of ferrihydrite. Geochim. Cosmochim. Acta 1996 60 1899–1908. https://doi.org/10.1016/0016-7037(96)00064-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UP83500004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G.X., Dohnalkova, A.C., Kelly, S.D., Gorby, Y., and Kemner, K.M. Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 2008 72 4901–4915. https://doi.org/10.1016/j.gca.2008.07.016, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000260038200001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Clark, D.L., Hobart, D.E., and Neu, M.P. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995 95 25–48. https://doi.org/10.1021/cr00033a002, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QG96000003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Di Christina, T.J., Fredrickson, J.K., and Zachara, J.M. Enzymology of electron transport: Energy generation with geochemical consequences. p. 27–52. In J. Banfield et al. (ed.) Molecular geomicrobiology. Vol. 59. Mineralogical Soc. of America, Chantilly, VA. 2005
- Dong, W.M., and Brooks, S.C. Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ. Sci. Technol. 2006 40 4689–4695. https://doi.org/10.1021/es0606327, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000239437600032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S.M.W., and Krupka, K.M. Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta 2000 64 3085–3098. https://doi.org/10.1016/S0016-7037(00)00397-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089397600002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Ganesh, R., Robinson, K.G., Reed, G.D., and Sayler, G.S. Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl. Environ. Microbiol. 1997 63 4385–4391. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YE28100036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Ginder-Vogel, M., Criddle, C.S., and Fendorf, S. Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr) oxides. Environ. Sci. Technol. 2006 40 3544–3550. https://doi.org/10.1021/es052305p, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237921200023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Gorby, Y.A., and Lovley, D.R. Enzymatic uranium precipitation. Environ. Sci. Technol. 1992 26 205–207. https://doi.org/10.1021/es00025a026, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992GY59000034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Guillaumont, R., Fanghanel, T., Neck, V., Fuger, J., Palmer, D.A., Grenthe, I., and Rand, M.H. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium, and technichium report. Nuclear Energy Agency, Paris. 2003
- Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., and Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 2003 67 2977–2992. https://doi.org/10.1016/S0016-7037(03)00276-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184609300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Kalmykov, S.N., and Choppin, G.R. Mixed Ca2+/UO22+/CO32− complex formation at different ionic strengths. Radiochim. Acta 2000 88 603–606. https://doi.org/10.1524/ract.2000.88.9-11.603, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000166276300018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Kelly, S., Kemner, K.M., Brooks, S.C., Fredrickson, J.K., Kennedy, D.W., Zachara, J.M., Fendorf, S., Plymale, A., and Carroll, S.L. Direct evidence for Ca-UO2–CO3 complexation. U256. Abstracts, 225th American Chemical Society National Meeting, New Orleans, LA. 23–27 March 2003. American Chemical Society, Washington, DC. 2003
- Liger, E., Charlet, L., and Van Cappellen, P. Surface catalysis of uranium(VI) reduction by iron(II). Geochim. Cosmochim. Acta 1999 63 2939–2955. https://doi.org/10.1016/S0016-7037(99)00265-3, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083824200009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Liu, C.X., Gorby, Y.A., Zachara, J.M., Fredrickson, J.K., and Brown, C.F. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 2002 80 637–649. https://doi.org/10.1002/bit.10430, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000179197500005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Lovley, D.R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 1991 55 259–287
- Luo, J., Weber, F.A., Cirpka, O.A., Wu, W.M., Nyman, J.L., Carley, J., Jardine, P.M., Criddle, C.S., and Kitanidis, P.K. Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria. J. Contam. Hydrol. 2007 92 127–146
- Mayer, K.U., Frind, E.O., and Blowes, D.W. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38: 1174. 2002 doi: https://doi.org/10.1029/2001WR000862
- Michalsen, M.M., Goodman, B.A., Kelly, S.D., Kemner, K.M., McKinley, J.P., Stucki, J.W., and Istok, J.D. Uranium and technetium bio-immobilization in intermediate-scale physical models of an in situ bio-barrier. Environ. Sci. Technol. 2006 40 7048–7053. https://doi.org/10.1021/es060420+, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000241941700031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Neiss, J., Stewart, B.D., Nico, P.S., and Fendorf, S. Speciation-dependent microbial reduction of uranium within iron-coated sands. Environ. Sci. Technol. 2007 41 7343–7348. https://doi.org/10.1021/es0706697, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000250556100028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Payne, R.B., Gentry, D.A., Rapp-Giles, B.J., Casalot, L., and Wall, J.D. Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl. Environ. Microbiol. 2002 68 3129–3132. https://doi.org/10.1128/AEM.68.6.3129-3132.2002, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176030100065&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Senko, J.M., Zhang, G.X., McDonough, J.T., Bruns, M.A., and Burgos, W.D. Metal reduction at low pH by a Desulfosporosinus species: Implications for the biological treatment of acidic mine drainage. Geomicrobiol. J. 2009 26 71–82. https://doi.org/10.1080/01490450802660193, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000263555100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Spear, J.R., Figueroa, L.A., and Honeyman, B.D. Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria. Appl. Environ. Microbiol. 2000 66 3711–3721. https://doi.org/10.1128/AEM.66.9.3711-3721.2000, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089109200009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Stewart, B.D., Neiss, J., and Fendorf, S. Quantifying constraints imposed by calcium and iron on bacterial reduction of uranium(VI). J. Environ. Qual. 2007 36 363–372. https://doi.org/10.2134/jeq2006.0058, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000244979300003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Stookey, L.L. A new spectrophotometric reagent for iron. Anal. Chem. 1970 42 779–781. https://doi.org/10.1021/ac60289a016, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1970G339000022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Wielinga, B., Bostick, B., Hansel, C.M., Rosenzweig, R.F., and Fendorf, S. Inhibition of bacterially promoted uranium reduction: Ferric (hydr)oxides as competitive electron acceptors. Environ. Sci. Technol. 2000 34 2190–2195. https://doi.org/10.1021/es991189l, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087394400031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Wu, W.M., Carley, J., Gentry, T., Ginder-Vogel, M.A., Fienen, M., Mehlhorn, T., Yan, H., Caroll, S., Pace, M.N., Nyman, J., Luo, J., Gentile, M.E., Fields, M.W., Hickey, R.F., Gu, B.H., Watson, D., Cirpka, O.A., Zhou, J.Z., Fendorf, S., Kitanidis, P.K., Jardine, P.M., and Criddle, C.S. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer: 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ. Sci. Technol. 2006 40 3986–3995. https://doi.org/10.1021/es051960u, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000238217200052&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4