Journal list menu
Lasting Effects of Wildfire on Disinfection By-Product Formation in Forest Catchments
Corresponding Author
Alex T. Chow
Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC
Corresponding author ([email protected]).Search for more papers by this authorKuo-Pei Tsai
Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC
Dep. of Agricultural Chemistry, National Taiwan Univ., Taiwan
Search for more papers by this authorTimothy S. Fegel
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Search for more papers by this authorDerek N. Pierson
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Dep. of Crop and Soil Sciences, Oregon State Univ., Portland, OR
Search for more papers by this authorCharles C. Rhoades
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Search for more papers by this authorCorresponding Author
Alex T. Chow
Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC
Corresponding author ([email protected]).Search for more papers by this authorKuo-Pei Tsai
Biogeochemistry & Environmental Quality Research Group, Clemson Univ., Clemson, SC
Dep. of Agricultural Chemistry, National Taiwan Univ., Taiwan
Search for more papers by this authorTimothy S. Fegel
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Search for more papers by this authorDerek N. Pierson
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Dep. of Crop and Soil Sciences, Oregon State Univ., Portland, OR
Search for more papers by this authorCharles C. Rhoades
USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO
Search for more papers by this authorAssigned to Associate Editor Mikhail Borisover.
Abstract
Severe wildfires often have dramatic short-term effects on water quality, although there is increasing evidence that in some catchments their effects can persist for many years. Forest recovery after the 2002 Hayman Fire burned catchments that supply drinking water to over a half million users in Denver, CO, has been extremely slow and has caused persistent water quality concerns. To evaluate whether postfire water quality changes increase the potential to form undesirable by-products of water disinfection, we compared stream water from eight burned catchments within the Hayman Fire and five adjacent unburned catchments. We tested dissolved organic carbon (DOC) concentrations and the formation of disinfection by-products (trihalomethanes [THMs], haloacetonitriles [HANs], chloral hydrate [CHD, and haloketones [HKTs]) in stream water monthly during 2014 and 2015. Stream DOC, THMs, and CHD and specific ultraviolet absorbance at 254 nm (SUVA254) were elevated in catchments with a moderate extent of high-severity wildfire (8–46% of catchment area) relative to catchments that were unburned and those that burned more extensively (>74% of catchment area) 14 yr after the fire. In contrast, formation of highly toxic but unregulated nitrogenous HANs increased linearly with wildfire extent. Although these findings should not raise concern regarding drinking water safety, they highlight the long-term influences of high severity wildfire on source water C content, composition, and treatability.
Core Ideas
- Wildfire impacts on source water quality could last over a decade.
- Formation of highly toxic nitrogenous DBP precursors increased linearly with wildfire extent.
- DBP formation was highest in streams draining moderately burned catchments.
References
- 1Abney, R.B., Kuhn, T.J., Chow, A., Hockaday, W., Fogel, M.L. et al. 2019. Pyrogenic carbon erosion after the Rim Fire, Yosemite National Park: The role of burn severity and slope. J. Geophys. Res. Biogeosci. 124(2): 432–449. doi: 10.1029/2018JG004787
- 2Ågren, A., Buffam, I., Berggren, M., Bishop, K., Jansson, M. et al. 2008. Dissolved organic carbon characteristics in boreal streams in a forest–wetland gradient during the transition between winter and summer. J. Geophys. Res. Biogeosci. 113(G3). doi: 10.1029/2007JG000674
10.1029/2007JG000674 Google Scholar
- 3Alansari, A., Selbes, M., Karanfil, T., Amburgey, J.. 2016. Removal of disinfection by-product precursors using hybrid coagulation–ceramic membrane systems. J. Am. Water Works Assoc. 108(10): E513–E522. doi: 10.5942/jawwa.2016.108.0140
10.5942/jawwa.2016.108.0140 Google Scholar
- 4Badía, D., Marti, C., Aguirre, J., Echeverria, M.T., Ibarra, P.. 2008. Erodibility and hydrology of arid burned soils: Soil type and revegetation effects. Arid Land Res. Manage. 22(4): 286–295. doi: 10.1080/15324980802388231
10.1080/15324980802388231 Google Scholar
- 5Bladon, K.D., Emelko, M.B., Silins, U., Stone, M.. 2014. Wildfire and the future of water supply. Environ. Sci. Technol. 48(16): 8936–8943. doi: 10.1021/es500130g
- 6Bryant, B., McGrew, L.W., Wobus, R.A.. 1981. Geologic map of the Denver 1 degree by 2 degrees Quadrangle, north-central Colorado. IMAP 1163. USGS, Reston VA. doi: 10.3133/i1163
10.3133/i1163 Google Scholar
- 7Cawley, K.M., Hohner, A.K., Podgorski, D.C., Cooper, W.T., Korak, J.A. et al. 2017. Molecular and spectroscopic characterization of water extractable organic matter from thermally altered soils reveal insight into disinfection byproduct precursors. Environ. Sci. Technol. 51(2): 771–779. doi: 10.1021/acs.est.6b05126
- 8Chambers, M.E., Fornwalt, P.J., Malone, S.L., Battaglia, M.A.. 2016. Patterns of conifer regeneration following high severity wildfire in ponderosa pine-dominated forests of the Colorado front range. For. Ecol. Manage. 378: 57–67. doi: 10.1016/j.foreco.2016.07.001
- 9Chen, H., Chow, A.T., Li, X.W., Ni, H.G., Dahlgren, R.A., Xeng, H., Wang, J.J.. 2018. Wildfire burn intensity affects the quantity and speciation of PAH in soils. ACS Earth Space Chem. 2: 1262–1270.
10.1021/acsearthspacechem.8b00101 Google Scholar
- 10Chow, A.T., Dahlgren, R.A., Harrison, J.A.. 2007. Watershed sources of disinfection byproduct precursors in the Sacramento and San Joaquin Rivers, California. Environ. Sci. Technol. 41(22): 7645–7652. doi: 10.1021/es070621t
- 11Chow, A.T., Dahlgren, R.A., Zhang, Q., Wong, P.K.. 2008. Relationships between specific ultraviolet absorbance and trihalomethane precursors of different carbon sources. J. Water Supply Res. Technol.–AQUA 57(7): 471–480. 10.2166/aqua.2008.064
- 12Chow, A.T., Díaz, F.J., Wong, K.-H., O’Geen, A.T., Dahlgren, R.A. et al. 2013. Photochemical and bacterial transformations of disinfection by-product precursors in water. J. Environ. Qual. 42(5): 1589–1595. doi: 10.2134/jeq2013.01.0022
10.2134/jeq2013.01.0022 Google Scholar
- 13Chow, A.T., O’Geen, A.T., Dahlgren, R.A., Díaz, F.J., Wong, K.-H. et al. 2011. Reactivity of litter leachates from California oak woodlands in the formation of disinfection by-products. J. Environ. Qual. 40(5): 1607–1616. doi: 10.2134/jeq2010.0488
10.2134/jeq2010.0488 Google Scholar
- 14Cipra, J.E., Kelly, E.F., MacDonald, L., Norman, J.. 2003. Soil properties, erosion, and implications for rehabilitation and aquatic ecosystems. In: R.T. Graham, editor, Hayman Fire case study. Gen. Tech. Rep. RMRS-GTR-114. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT. p. 204–219.
- 15Cortés, C., Marcos, R.. 2018. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 831: 1–12. doi: 10.1016/j.mrgentox.2018.04.005
- 16Emelko, M.B., Silins, U., Bladon, K.D., Stone, M.. 2011. Implications of land disturbance on drinking water treatability in a changing climate: Demonstrating the need for “source water supply and protection” strategies. Water Res. 45(2): 461–472. doi: 10.1016/j.watres.2010.08.051
- 17Fornwalt, P.J., Huckaby, L.S., Alton, S.K., Kaufmann, M.R., Brown, P.M. et al. 2016. Did the 2002 Hayman Fire, Colorado, USA, burn with uncharacteristic severity? Fire Ecol. 12(3): 117–132. doi: 10.4996/fireecology.1203117
- 18Francos, M., Úbeda, X., Tort, J., Panareda, J.M., Cerdà, A.. 2016. The role of forest fire severity on vegetation recovery after 18 years: Implications for forest management of Quercus suber L. in Iberian Peninsula. Global Planet. Change 145: 11–16. doi: 10.1016/j.gloplacha.2016.07.016
- 19Graham, R.T. 2003. Hayman fire case study. Gen. Tech. Rep. RMRS-GTR-114. USDA Forest Service, Rocky Mountain Research Station, Ogden, UT. doi: 10.2737/RMRS-GTR-114.
10.2737/RMRS‐GTR‐114 Google Scholar
- 20Hallema, D.W., Sun, G., Caldwell, P.V., Norman, S. et al. 2016. Relationships between wildland fires and watershed hydrology across the contiguous US. In: C.E. Stringer K.W. Krauss J. Latimer, editors, Headwaters to estuaries: advances in watershed science and management. Proceedings of the Fifth Interagency Conference on Research in the Watersheds, North Charleston, SC. 2–5 Mar. 2015. e-Gen. Tech. Rep. SRS-211. USDA Forest Service, South Research Station, Asheville, NC. p. 103.
- 21Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J. et al. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53(3): 955–969. doi: 10.4319/lo.2008.53.3.0955
- 22Hohner, A.K., Cawley, K., Oropeza, J., Summers, R.S., Rosario-Ortiz, F.L.. 2016. Drinking water treatment response following a Colorado wildfire. Water Res. 105: 187–198. doi: 10.1016/j.watres.2016.08.034
- 23Hohner, A.K., Terry, L.G., Townsend, E.B., Summers, R.S., Rosario-Ortiz, F.L.. 2017. Water treatment process evaluation of wildfire-affected sediment leachates. Environ. Sci. Water Res. Technol. 3(2): 352–365. doi: 10.1039/C6EW00247A
10.1039/C6EW00247A Google Scholar
- 24Jones, K.W., Cannon, J.B., Saavedra, F.A., Kampf, S.K., Addington, R.N. et al. 2017. Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado. J. Environ. Manage. 198: 66–77. doi: 10.1016/j.jenvman.2017.05.023
- 25Keeley, J.E. 2009. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 18(1): 116–126. doi: 10.1071/WF07049
- 26Kershner, J.L., MacDonald, L., Decker, L.M., Winters, D., Libohova, Z.. 2003. Ecological effects of the Hayman Fire—Part 6: Fire-induced changes in aquatic ecosystems. In: R.T. Graham, editor, Hayman fire case study. Gen. Tech. Rep. RMRS-GTR-114, USDA Forest Service Rocky Mountain Research Station, Ogden, UT. p. 232–243. https://www.fs.usda.gov/treesearch/pubs/28727 (accessed 22 Feb. 2018).
- 27Larouche, J.R., Abbott, B.W., Bowden, W.B., Jones, J.B.. 2015. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences 12(14): 4221–4233. doi: 10.5194/bg-12-4221-2015
- 28Lee, B.S., Lajtha, K.. 2016. Hydrologic and forest management controls on dissolved organic matter characteristics in headwater streams of old-growth forests in the Oregon Cascades. For. Ecol. Manage. 380: 11–22. doi: 10.1016/j.foreco.2016.08.029
- 29Malone, S.L., Fornwalt, P.J., Battaglia, M.A., Chambers, M.E., Iniguez, J.M. et al. 2018. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest. Forests 9(1): 45. doi: 10.3390/f9010045
- 30Martin, D.A. 2016. At the nexus of fire, water and society. Philos. Trans. R. Soc. B 371(1696): 20150172. doi: 10.1098/rstb.2015.0172
- 31Minshall, G.W., Todd, R. V., Robinson, C.T.. 2004. Stream ecosystem responses to fire: The first ten years. In: L.L. Wallace, editor, After the fires: The ecology of change in Yellowstone National Park. Yale Univ. Press, New Haven, CT. p. 165–188
10.12987/yale/9780300100488.003.0008 Google Scholar
- 32Pannkuk, C.D., Robichaud, P.R.. 2003. Effectiveness of needle cast at reducing erosion after forest fires. Water Resour. Res. 39(12): 1333. doi: 10.1029/2003WR002318
- 33Poon, P.K., Kinoshita, A.M.. 2018. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes. J. Hydrol. 559: 71–83. doi: 10.1016/j.jhydrol.2018.02.023
- 34Price, J.I., Heberling, M.T., Nietch, C.T.. 2018. Economic support for decisions on source water protection. J. Am. Water Works Assoc. 110(9): 56–61. doi: 10.1002/awwa.1153
10.1002/awwa.1153 Google Scholar
- 35Price, J.I., Renzetti, S., Dupont, D., Adamowicz, W., Emelko, M.B.. 2017. Production costs, inefficiency, and source water quality: A stochastic cost frontier analysis of Canadian water utilities. Land Econ. 93(1): 1–11. doi: 10.3368/le.93.1.1
- 36Rhoades, C.C., Chow, A.T., Covino, T.P., Fegel, T.S., Pierson, D.N. et al. 2018. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems doi: 10.1007/s10021-018-0293-6
10.1007/s10021‐018‐0293‐6 Google Scholar
- 37Rhoades, C.C., Entwistle, D., Butler, D.. 2011. The influence of wildfire extent and severity on streamwater chemistry, sediment, and temperature following the Hayman Fire, Colorado. Int. J. Wildland Fire 20(3): 430–442. doi: 10.1071/WF09086
- 38Riggan, P.J., Lockwood, R.N., Jacks, P.M., Colver, C.G., Weirich, F. et al. 1994. Effects of fire severity on nitrate mobilization in catchments subject to chronic atmospheric deposition. Environ. Sci. Technol. 28(3): 369–375. doi: 10.1021/es00052a005
- 39Roccaro, P., Vagliasindi, F.G.A., Korshin, G.V.. 2014. Relationships between trihalomethanes, haloacetic acids, and haloacetonitriles formed by the chlorination of raw, treated, and fractionated surface waters. J. Water Supply Res. Technol.–AQUA 63(1): 21–30. doi: 10.2166/aqua.2013.043
10.2166/aqua.2013.043 Google Scholar
- 40Rust, A.J., Hogue, T.S., Saxe, S., McCray, J.. 2018. Post-fire water-quality response in the western United States. Int. J. Wildland Fire 27(3): 203–216. doi: 10.1071/WF17115
- 41Santín, C., Doerr, S.H., Merino, A., Bryant, R., Loader, N.J.. 2016. Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma 264: 71–80. doi: 10.1016/j.geoderma.2015.09.021
- 42Santos, F., Russell, D., Berhe, A.A.. 2016. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California. J. Geophys. Res. Biogeosci. 121(11): 2877–2885. doi: 10.1002/2016JG003597
- 43Strack, M., Zuback, Y., McCarter, C., Price, J.. 2015. Changes in dissolved organic carbon quality in soils and discharge 10 years after peatland restoration. J. Hydrol. 527: 345–354. doi: 10.1016/j.jhydrol.2015.04.061
- 44Tsai, K.-P., Chow, A.T.. 2016. Growing algae alter spectroscopic characteristics and chlorine reactivity of dissolved organic matter from thermally-altered forest litters. Environ. Sci. Technol. 50(15): 7991–8000. doi: 10.1021/acs.est.6b01578
10.1021/acs.est.6b01578 Google Scholar
- 45Tsai, K.-P., Uzun, H., Karanfil, T., Chow, A.T.. 2017. Dynamic changes of disinfection byproduct precursors following exposures of Microcystis aeruginosa to wildfire ash solutions. Environ. Sci. Technol. 51(15): 8272–8282. doi: 10.1021/acs.est.7b01541
10.1021/acs.est.7b01541 Google Scholar
- 46 USEPA. 1995. Method 551.1: Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection. Revision 1.0. USEPA, Cincinnati, OH.
- 47 USEPA. 2015. Stage 1 and Stage 2 disinfectants and disinfection byproducts rules. USEPA. https://www.epa.gov/dwreginfo/stage-1-and-stage-2-disinfectants-and-disinfection-byproducts-rules (accessed 28 Sept. 2018).
- 48Wang, J.-J., Dahlgren, R.A., Chow, A.T.. 2015a. Controlled burning of forest detritus altering spectroscopic characteristics and chlorine reactivity of dissolved organic matter: Effects of temperature and oxygen availability. Environ. Sci. Technol. 49(24): 14019–14027. doi: 10.1021/acs.est.5b03961
- 49Wang, J.-J., Dahlgren, R.A., Erşan, M.S., Karanfil, T., Chow, A.T.. 2015b. Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus. Environ. Sci. Technol. 49(10): 5921–5929. doi: 10.1021/es505836m
- 50Wang, J., Zhang, X.. 2017. Impacts of wildfires on interannual trends in land surface phenology: An investigation of the Hayman Fire. Environ. Res. Lett. 12(5): 054008. doi: 10.1088/1748-9326/aa6ad9
10.1088/1748‐9326/aa6ad9 Google Scholar
- 51Wang, L., Wei, X., Bishop, K., Reeves, A.D., Ursino, N. et al. 2018. Vegetation changes and water cycle in a changing environment. Hydrol. Earth Syst. Sci. 22(3): 1731–1734. doi: 10.5194/hess-22-1731-2018
- 52Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K.. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37(20): 4702–4708.
- 53Wert, E.C., Rosario-Ortiz, F.L.. 2013. Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. Environ. Sci. Technol. 47(12): 6332–6340. doi: 10.1021/es400834k
10.1021/es400834k Google Scholar
- 54Westerling, A.L. 2016. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B 371(1696): 20150178. doi: 10.1098/rstb.2015.0178
- 55Westerling, A.L., Hidalgo, H.G., Cayan, D.R., Swetnam, T.W.. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313(5789): 940–943. doi: 10.1126/science.1128834
- 56Zhang, Y., Biswas, A.. 2017. The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: A review. In: Adaptive soil management: From theory to practices. Springer, Singapore. p. 465–476.
10.1007/978-981-10-3638-5_21 Google Scholar