Journal list menu
Genomic Relationship Matrix for Correcting Pedigree Errors in Breeding Populations: Impact on Genetic Parameters and Genomic Selection Accuracy
Patricio R. Munoz
Agronomy Dep., Univ. of Florida, P.O. Box 110965, Gainesville, FL, 32611 USA
Search for more papers by this authorMarcio F. R. Resende Jr.
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorDudley A. Huber
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorTania Quesada
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorMarcos D. V. Resende
EMBRAPA Forestry and Dep. of Forest Engineering, Universidade Federal de Viçosa-UFV, Brazil
Search for more papers by this authorDavid B. Neale
Dep. of Plant Sciences, 262C Robbins Hall, One Shields Ave., Univ. of California, Davis, CA, 95616
Search for more papers by this authorJill L. Wegrzyn
Dep. of Plant Sciences, 262C Robbins Hall, One Shields Ave., Univ. of California, Davis, CA, 95616
Search for more papers by this authorMatias Kirst
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorCorresponding Author
Gary F. Peter
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Corresponding author ([email protected]).Search for more papers by this authorPatricio R. Munoz
Agronomy Dep., Univ. of Florida, P.O. Box 110965, Gainesville, FL, 32611 USA
Search for more papers by this authorMarcio F. R. Resende Jr.
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorDudley A. Huber
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorTania Quesada
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorMarcos D. V. Resende
EMBRAPA Forestry and Dep. of Forest Engineering, Universidade Federal de Viçosa-UFV, Brazil
Search for more papers by this authorDavid B. Neale
Dep. of Plant Sciences, 262C Robbins Hall, One Shields Ave., Univ. of California, Davis, CA, 95616
Search for more papers by this authorJill L. Wegrzyn
Dep. of Plant Sciences, 262C Robbins Hall, One Shields Ave., Univ. of California, Davis, CA, 95616
Search for more papers by this authorMatias Kirst
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Search for more papers by this authorCorresponding Author
Gary F. Peter
School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Univ. of Florida, Gainesville, FL, 32611
Corresponding author ([email protected]).Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
ABSTRACT
Quantitative genetic analyses aim to estimate genetic parameters and breeding values to select superior parents, families, and individuals. For these estimates a relationship matrix derived from the pedigree typically is used in a mixed model framework. However, breeding is a complex, multistep process and errors in the pedigree are common. Because errors reduce the accuracy of genetic parameter estimates and affect genetic gain, it is important to correct these errors. Here we show that a realized relationship matrix (RRM) derived from single nucleotide polymorphism markers based on the normality of the relationship coefficients can be used to correct pedigree errors. For a loblolly pine (Pinus taeda L.) breeding population, errors in the pedigree were detected and corrected with the RRM. With the corrected pedigree, best linear unbiased predictor (BLUP) models fit the data significantly better for 14 out of 15 traits evaluated, and the predictive ability of the genomic selection models using ridge regression BLUP increased for 13 traits. The corrected pedigree based on the normality of the relationship coefficients improves accuracy of traditional estimations of heritability and breeding values as well as genomic selection predictions. As more breeding programs begin to use genomic selection, we recommend first using the dense panel of markers to correct pedigree errors and then using the improved information to develop genomic selection prediction models.
References
- Adams, W., Neale, D., and Loopstra, C.. 1988. Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet. 37: 147–152.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988Q476000012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Baltunis, B.S., Huber, D.A., White, T.L., Goldfarb, B., and Stelzer, H.E.. 2005. Genetic effects of rooting loblolly pine stem cuttings from a partial diallel mating design. Can. J. For. Res. 35: 1098–1108. doi: 10.1139/x05-038 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000229974300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Baltunis, B., Huber, D., White, T., Goldfarb, B., and Stelzer, H.. 2007. Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families. Can. J. For. Res. 37: 195–205. doi: 10.1139/x06-203 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000246189000018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Banos, G., Wiggans, G.R., and Powell, R.L.. 2001. Impact of paternity errors in cow identification on genetic evaluations and international comparisons. J. Dairy Sci. 84: 2523–2529. doi: 10.3168/jds.S0022-0302(01)74703-0 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172662100022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Bennewitz, J., Reinsch, N., and Kalm, E.. 2002. Gencheck: A program for consistency checking and derivation of genotypes at co-dominant and dominant loci. J. Anim. Breed. Genet. 119: 350–360. doi: 10.1046/j.1439-0388.2002.00357.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000178616700007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Chen, C.Y., Misztal, I., Aguilar, I., Legarra, A., and Muir, W.M.. 2011. Effect of different genomic relationship matrices on accuracy and scale. J. Anim. Sci. 89: 2673–2679. doi: 10.2527/jas.2010-3555 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000293893000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- de los Campos, G., Gianola, D., and Rosa, G.J.M.. 2009. Reproducing kernel Hilbert spaces regression: A general framework for genetic evaluation. J. Anim. Sci. 87: 1883–1887. doi: 10.2527/jas.2008-1259 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000266108600006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Doerksen, T., and Herbinger, C.. 2010. Impact of reconstructed pedigrees on progeny-test breeding values in red spruce. Tree Genet. Genomes 6: 591–600. doi: 10.1007/s11295-010-0274-1 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000279203600006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Eckert, A.J., Van Heerwaarden, J., Wegrzyn, J.L., Nelson, C.D., Ross-Ibarra, J., González-Martínez, S.C., and Neale, D.B.. 2010. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185: 969–982. doi: 10.1534/genetics.110.115543 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000281906800021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Ericsson, T. 1999. The effect of pedigree error by misidentification of individual trees on genetic evaluation of a full-sib experiment. Silvae Genet. 48: 239–242.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086386900006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Garrick, D.J., Taylor, J.F., and Fernando, R.L.. 2009. Deregressing estimated breeding values and weighting information for genomic regression analyses. Genet. Sel. Evol. 41: 55. doi: 10.1186/1297-9686-41-55
- Geldermann, H., Pieper, U., and Weber, W.. 1986. Effect of misidentification on the estimation of breeding value and heritability in cattle. J. Dairy Sci. 63: 1759–1768.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986F117300005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Gianola, D., Fernando, R.L., and Stella, A.. 2006. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173: 1761–1776. doi: 10.1534/genetics.105.049510 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000239629400047&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Gilmour, A., Gogel, B., Cullis, B., and Thompsom, R.. 2009. ASReml user guide, release 3.0. VSN International Ltd., Hemel Hempstead, UK.
- Goddard, M.E., and Hayes, B.J.. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programs. Nat. Rev. Genet. 10: 381–391. doi: 10.1038/nrg2575 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000266095200013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Goddard, M.E., Hayes, B.J., and Meuwissen, T.H.E.. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409–421. doi: 10.1111/j.1439-0388.2011.00964.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000297506800002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Goddard, M.E., Wray, N.R., Verbyla, K., and Visscher, P.M.. 2009. Estimating effects and making predictions from genome-wide marker data. Stat. Sci. 24: 517–529. doi: 10.1214/09-STS306 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000277257000010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Grattapaglia, D., and Resende, M.. 2011. Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241–255. doi: 10.1007/s11295-010-0328-4 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000288656800003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Habier, D., Fernando, R.L., and Dekkers, J.C.M.. 2009. Genomic selection using low-density marker panels. Genetics 182: 343–353. doi: 10.1534/genetics.108.100289 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000270213800029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Habier, D., Fernando, R.L., Kizilkaya, K., and Garrick, D.J.. 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinf. 12: 186. doi: 10.1186/1471-2105-12-186
- Habier, D., Tetens, J., Seefried, F.R., Lichtner, P., and Thaller, G.. 2010. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet. Sel. Evol. 42: 5. doi: 10.1186/1297-9686-42-5
- Hayes, B.J., Bowman, P.J., Chamberlain, A.C., Verbyla, K., and Goddard, M.E.. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 41: 51. doi: 10.1186/1297-9686-41-51
- Heffner, E.L., Lorenz, A.J., Jannink, J.L., and Sorrells, M.E.. 2010. Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci. 50: 1681–1690. doi: 10.2135/cropsci2009.11.0662 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000281060300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Heslot, N., Yang, H.P., Sorrells, M.E., and Jannink, J.L.. 2012. Genomic selection in plant breeding: A comparison of models. Crop Sci. 52: 146–160.https://doi.org/10.2135/cropsci2011.06.0297 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000298289600016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Israel, C., and Weller, J.I.. 2000. Effect of misidentification on genetic gain and estimation of breeding value in dairy cattle populations. J. Dairy Sci. 83: 181–187. doi: 10.3168/jds.S0022-0302(00)74869-7 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000084936700023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Iwata, H., and Jannink, J.L.. 2011. Accuracy of genomic selection prediction in barley breeding programs: A simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci. 51: 1915–1927. doi: 10.2135/cropsci2010.12.0732 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000293473800004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Jannink, J.L., Lorenz, A.J., and Iwata, H.. 2010. Genomic selection in plant breeding: From theory to practice. Brief. Funct. Genomics 9: 166–177. doi: 10.1093/bfgp/elq001 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000276191200010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Kohavi, R. 1995. The power of decision tables. Mach. Learn.: ECML 95(912): 174–189. doi:10.1007/3-540-59286-5_57
10.1007/3‐540‐59286‐5 Google Scholar
- Lynch, M., and Walsh, B.. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA.
- Meuwissen, T.H., Hayes, B.J., and Goddard, M.E.. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000168223400036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Meuwissen, T.H., Luan, T., and Woolliams, J.A.. 2011. The unified approach to the use of genomic and pedigree information in genomic evaluations revisited. J. Anim. Breed. Genet. 128: 429–439. doi: 10.1111/j.1439-0388.2011.00966.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000297506800004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Misztal, I., Legarra, A., and Aguilar, I.. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648–4655. doi: 10.3168/jds.2009-2064 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000269156600058&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Mrode, R.A. 2005. Linear models for the prediction of animal breeding values. 2nd ed. CABI Publishing Company, Cambridge, UK.
- Piepho, H.P., Mohring, J., Melchinger, A.E., and Buchse, A.. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161: 209–228. doi: 10.1007/s10681-007-9449-8 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000254877800019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Powell, J.E., Visscher, P.M., and Goddard, M.E.. 2010. Reconciling the analysis of IBD and IBS in complex trait studies. Nat. Rev. Genet. 11: 800–805. doi: 10.1038/nrg2865 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000283052800013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Quesada, T. 2010. Association genetics of pitch canker resistance in loblolly pine (Pinus taeda L.). (publication no. 3447054.) PhD diss., University of Florida, Gainesville FL.
- Quesada, T., Gopal, V., Cumbie, W.P., Eckert, A.J., Wegrzyn, J.L., and Neale, D.B. et al. 2010. Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186: 677–686. doi: 10.1534/genetics.110.117549 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000282807400019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Resende, M.F.R. Jr., Munoz, P., Acosta, J.J., Peter, G.F., Davis, J.M., and Grattapaglia, D. et al. 2012a. Accelerating the domestication of trees using genomic selection: Accuracy of prediction models across ages and environments. New Phytol. 193: 1099–1099. doi: 10.1111/j.1469-8137.2011.03895.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000299778300029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Resende, M.F.R. Jr., Munoz, P., Resende, M.D.V., Garrick, D.J., Fernando, R.L., and Davis, J.M. et al. 2012b. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503–1510. doi: 10.1534/genetics.111.137026 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000302775700025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Sanders, K., Bennewitz, J., and Kalm, E.. 2006. Wrong and missing sire information affects genetic gain in the Angeln dairy cattle population. J. Dairy Sci. 89: 7.
- Simeone, R., Misztal, I., Aguilar, I., and Legarra, A.. 2011. Evaluation of the utility of diagonal elements of the genomic relationship matrix as a diagnostic tool to detect mislabelled genotyped animals in a broiler chicken population. J. Anim. Breed. Genet. 128: 386–393. doi: 10.1111/j.1439-0388.2011.00926.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000295013900007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Van Raden, P.M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414–4423. doi: 10.3168/jds.2007-0980 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000260277200035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Visscher, P.M., Woolliams, J.A., Smith, D., and Williams, J.L.. 2002. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. J. Dairy Sci. 85: 2368–2375. doi: 10.3168/jds.S0022-0302(02)74317-8 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000178278700034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- White, T.L., Adams, W.T., and Neale, D.B.. 2007. Forest genetics. CABI Publishing, Wallingford, UK.
10.1079/9781845932855.0000 Google Scholar
- Wiggans, G.R., Van Raden, P.M., Bacheller, L.R., Tooker, M.E., Hutchison, J.L., Cooper, T.A., and Sonstegard, T.S.. 2010. Selection and management of DNA markers for use in genomic evaluation. J. Dairy Sci. 93: 2287–2292. doi: 10.3168/jds.2009-2773 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000276940800055&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Williams, E.R., Matheson, A.C., and Harwood, C.E.. 2002. Experimental design and analysis for tree improvement. 2nd ed. Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia.
10.1071/9780643090132 Google Scholar
- Yang, J., Benyamin, B., Mcevoy, B.P., Gordon, S., Henders, A.K., and Nyholt, D.R. et al. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42: 565–569. doi: 10.1038/ng.608 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000279242400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- Zhong, S., Dekkers, J.C.M., Fernando, R.L., and Jannink, J.-L.. 2009. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A barley case study. Genetics 182: 355–364. doi: 10.1534/genetics.108.098277 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000270213800030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4