Journal list menu
Micronutrient Density and Stability in West African Pearl Millet—Potential for Biofortification
Anna Pucher
Univ. of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr. 21, D-70599 Stuttgart, Germany
Search for more papers by this authorHenning Høgh-Jensen
National Food Institute, Technical Univ. of Denmark, 2800 Kgs., Lyngby, Denmark
Search for more papers by this authorJadah Gondah
Institut National de Recherche Agronomique du Niger (INRAN), Maradi, Niger
Search for more papers by this authorC. Tom Hash
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP, 12404 Niamey, Niger
Search for more papers by this authorCorresponding Author
Bettina I. G. Haussmann
Univ. of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr. 21, D-70599 Stuttgart, Germany
Corresponding author ([email protected]).Search for more papers by this authorAnna Pucher
Univ. of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr. 21, D-70599 Stuttgart, Germany
Search for more papers by this authorHenning Høgh-Jensen
National Food Institute, Technical Univ. of Denmark, 2800 Kgs., Lyngby, Denmark
Search for more papers by this authorJadah Gondah
Institut National de Recherche Agronomique du Niger (INRAN), Maradi, Niger
Search for more papers by this authorC. Tom Hash
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP, 12404 Niamey, Niger
Search for more papers by this authorCorresponding Author
Bettina I. G. Haussmann
Univ. of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr. 21, D-70599 Stuttgart, Germany
Corresponding author ([email protected]).Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
ABSTRACT
Pearl millet [Pennisetum glaucum (L.) R. Br.] is one of the most important cereals in West and Central Africa (WCA). Human populations in WCA are strongly affected by micronutrient deficiencies. Biofortification, the development of pearl millet varieties with enhanced micronutrient levels, is recognized as a suitable approach to reducing this widespread health problem. To assess the potential of biofortification of WCA pearl millet germplasm, we studied quantitative-genetic parameters of eight mineral densities in whole and decorticated grains, their stability over environments, and the correlations among minerals and agromorphological traits. The study included 72 WCA pearl millet genotypes grown in three environments in Niger, contrasting in soil fertilization. Significant genotypic effects, moderate estimates of heritability, and genetic variation for mineral densities, especially for Fe and Zn, indicate a high potential for biofortification of WCA pearl millet. However, screening of additional landraces or introgression of favorable alleles from highly nutrient-dense Indian germplasm could expedite achievement of higher densities. Genotype-by-environment interaction effects were significant for Fe and Zn grain densities, showing the importance of multienvironmental evaluation for identifying stable genotypes. Identified genotypes with relatively stable Fe and Zn grain densities appear suitable for use in future WCA pearl millet biofortification breeding programs.
Supporting Information
Filename | Description |
---|---|
csc2cropsci2013110744-sup-0001.xlsxapplication/xlsx, 66.1 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Andrews, D.J., and Anand Kumar, K.. 1996. Use of the West African pearl millet landrace Iniadi cultivar development. Plant Genet. Resour. Newsl. 105: 15–22.
- Bashir, E.M., Ali, A.M., Ali, A.M., Melchinger, A.E., Parzies, H.K., and Haussmann, B.I.G.. 2013. Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional values. Plant Genet. Resour. 1–13. doi:10.1017/S1479262113000233.
- Baxter, I.R., Gustin, J.L., Settles, M., and Hoekenga, O.a.. 2012. Ionomic characterization of maize kernels in the intermated B73 × Mo17 population. Crop Sci. 53: 208–220 10.2135/cropsci2012.02.0135.
10.2135/cropsci2012.02.0135 Google Scholar
- Birner, R., Kone, S.A., Linacre, N., and Resnick, D.. 2007. Biofortified foods and crops in West Africa: Mali and Burkina Faso. AgBioForum. 10: 192–200.
- Bouis, H.E. 1999. Economics of enhanced micronutrient density in food staples. F. Crop. Res. 60: 165–173. doi: 10.1016/S0378-4290(98)00138-5
- Bowen, D.E., Souza, E.J., Guttieri, M.J., Raboy, V., and Fu, J.. 2007. A low phytic acid barley mutation alters seed gene expression. Crop Sci. 47: 149–159. doi: 10.2135/cropsci2006.07.0456tpg
- Butler, D.G., Cullis, B.R., Gilmour, A.R., and Gogel, B.J.. 2009. Mixed models for S language environments. ASReml-r reference manual. Queensland Dep. of Primary Industries and Fisheries, Brisbane,Queensland, Australia.
- Cakmak, I., Kalayci, M., Kaya, Y., Torun, A., Aydin, N., Wang, Y., Arisoy, Z., Erdem, H., Yazici, A., Gokmen, O., Ozturk, L., and Horst, W.J.. 2010. Biofortification and localization of zinc in wheat grain. J. Agric. Food Chem. 58: 9092–9102. doi: 10.1021/jf101197h
- Cercamondi, C.I., Egli, I.M., Mitchikpe, E., Tossou, F., Zeder, C., Hounhouigan, J.D., and Hurrell, R.F.. 2013. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified. J. Nutr. 143: 1376–1382. doi: 10.3945/jn.113.176826
- Ciampitti, I.A., and Vyn, T.J.. 2013. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: II. Calcium, magnesium, and micronutrients. Agron. J. 105: 1645–1657. doi: 10.2134/agronj2013.0126
10.2134/agronj2013.0126 Google Scholar
- De Mendiburu, F. 2012. Agricolae: Statistical procedures for agricultural research. R package version 1.1–3.
- Dwivedi, S.L., Sahrawat, K., Rai, K.N., Blair, M.W., Andersson, M.S., and Pfeiffer, W.. 2012. Nutritionally enhanced staple food crops. Plant Breeding Reviews 36: 169–291. doi: 10.1002/9781118358566.ch3
- Eeckhout, W., and De Paepe, M.. 1994. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol. 47: 19–29. doi: 10.1016/0377-8401(94)90156-2
- Garcia-Oliveira, A.L., Tan, L., Fu, Y., and Sun, C.. 2009. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J. Integr. Plant Biol. 51: 84–92. doi: 10.1111/j.1744-7909.2008.00730.x
- Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., and Cakmak, I.. 2010. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52: 342–349. doi: 10.1016/j.jcs.2010.05.003
- Goswami, A.K., Sharma, K.P., and Sehgal, K.L.. 1969. Nutritive value of proteins of pearl millet of high-yielding varieties and hybrids. Br. J. Nutr. 23: 913–916.https://doi.org/10.1079/BJN19690102
- Govindaraj, M., Rai, K.N., Shanmugasundaram, P., Dwivedi, S.L., Sahrawat, K.L., Muthaiah, R., and Rao, S.. 2013. Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci. 53: 507–517. doi: 10.2135/cropsci2012.08.0477
- Govindaraj, M., Selvi, M., and Rajarathinam, S.. 2009. Correlation studies for grain yield components and nutritional quality traits in pearl millet [Pennisetum glaucum (L.) R. Br.] germplasm. Evolution (N. Y) 5: 686–689.
- Govindaraj, M., Selvi, B., Rajarathinam, S., and Sumathi, P.. 2011. Genetic variability and heritability of grain yield components and grain mineral concentration in India's pearl millet [Pennisetum glaucum (L.) R. Br.] accessions. African J. Food. Agric. Nutr. Dev. 11: 4758–4771.
- Gupta, S.K., Velu, G., Rai, K.N., and Sumalini, K.. 2009. Association of grain iron and zinc content with grain yield and other traits in pearl millet. Crop Improv. 36(2): 4–7.
- Guttieri, M., Bowen, D., Dorsch, J.A., Raboy, V., Souza, E., and Ins, P.. 2004. Identification and characterization of a low phytic acid wheat. Crop Sci. 44: 418–424. doi: 10.2135/cropsci2004.0418
- Haussmann, B.I.G., Rattunde, F.H., Weltzien-Rattunde, E., Traoré, P.S.C., vom Brocke, K., and Parzies, H.K.. 2012. Breeding strategies for adaptation of pearl millet and sorghum to climate variability and change in West Africa. J. Agron. Crop Sci. 198: 327–339. doi: 10.1111/j.1439-037X.2012.00526.x
- Høgh-Jensen, H., Myaka, F.A., Kamalongo, D., Rasmussen, J., and Ngwira, A.. 2006. Effect of environment on multi-element grain composition of pigeonpea cultivars under farmers’ conditions. Plant Soil 285: 81–96. doi: 10.1007/s11104-006-0060-x
10.1007/s11104-006-0060-x Google Scholar
- House, W.A. 1999. Trace element bioavailability as exemplified by iron and zinc. F. Crop. Res. 60: 115–141. doi: 10.1016/S0378-4290(98)00136-1
- Husted, S., Mikkelsen, B.F., Jensen, J., and Nielsen, N.E.. 2004. Elemental fingerprint analysis of barley (Hordeum vulgare) using inductively coupled plasma mass spectrometry, isotope-ratio mass spectrometry, and multivariate statistics. Anal. Bioanal. Chem. 378: 171–182. doi: 10.1007/s00216-003-2219-0
- Joy, E.J.M., Young, S.D., Black, C.R., Ander, E.L., Watts, M.J., and Broadley, M.R.. 2012. Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant Soil 368: 129–137. doi: 10.1007/s11104-012-1388-z
- Khairwal, I.S., Rai, K.N., Andrews, D.J., and Harinarayana, G.. 1999. Pearl millet breeding. Oxford & IBH publishing Co. Pvt. Ltd., New Delhi.
- Kodkany, B.S., Bellad, R.M., Mahantshetti, N.S., Westcott, J.E., Krebs, N.F., Kemp, J.F., and Hambidge, K.M.. 2013. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 143: 1489–1493. doi: 10.3945/jn.113.176677
- Kumar, S. 2011. Development of new mapping population and marker-assisted improvement of iron and zinc grain density in pearl millet [Pennisetum glaucum (L.) R. Br.]. Ph.D. thesis, Swami Keshwanand Rajasthan Agricultural University, Bikaner, Rajasthan, India.
- Kutman, U.B., Yildiz, B., and Cakmak, I.. 2011. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci. 53: 118–125. doi: 10.1016/j.jcs.2010.10.006
- Leiser, W.L., Rattunde, H.F.W., Piepho, H.-P., Weltzien, E., Diallo, A., Melchinger, A.E., Parzies, H.K., and Haussmann, B.I.G.. 2012. Selection strategy for sorghum targeting phosphorus-limited environments in West Africa: Analysis of multi-environment experiments. Crop Sci. 52: 2517–2527. doi: 10.2135/cropsci2012.02.0139
- Meenakshi, J.V., Johnson, N.L., Manyong, V.M., De Groote, H., Javelosa, J., Yanggen, D.R., Naher, F., Gonzalez, C., García, J., and Meng, E.. 2010. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 38: 64–75. doi: 10.1016/j.worlddev.2009.03.014
- Muthayya, S., Rah, J.H., Sugimoto, J.D., Roos, F.F., Kraemer, K., and Black, R.E.. 2013. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8: e67860. doi: 10.1371/journal.pone.0067860
- Nolan, K.B., Duffin, P.A., and Mcweeny, D.J.. 1987. Effects of phytate on mineral bioavailability. In vitro studies on studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (also Cd2+) solubilities in the presence of phytate. J. Sci. Food Agric. 40: 79–85. doi: 10.1002/jsfa.2740400110
- Pachón, H., Ortiz, D.A., Araujo, C., Blair, M.W., and Restrepo, J.. 2009. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize. J. Food Sci. 74: H147–H154. doi: 10.1111/j.1750-3841.2009.01181.x
- Parentoni, S.N., Lopes, C., and Júnior, D.S.. 2008. Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesqui. Agropecu. Bras. 43: 893–901. doi: 19.1590/S0100-204X2008000700014.
- Pfeiffer, W.H., and McClafferty, B.. 2007. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 47: 88–105. doi: 10.2135/cropsci2007.09.0020IPBS
- R Development Core Team. 2012. R: A language and environment for statistical computing. 2.14.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 25 Apr. 2014).
- Raboy, V. 2001. Seeds for a better future: “Low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 6: 458–462. doi: 10.1016/S1360-1385(01)02104-5
- Rai, K.N., Govindaraj, M., and Rao, A.S.. 2012. Genetic enhancement of grain iron and zinc content in pearl millet. Qual. Assur. Saf. Crop. Foods. 4: 119–125. doi: 10.1111/j.1757-837X.2012.00135.x
- Rai, K., Kumar, K., Andrews, D., Rao, A., Raj, A., and Witcombe, J.. 1990. Registration of ‘ICTP 8203’ pearl millet. Crop Sci. 30: 959. doi: 10.2135/cropsci1990.0011183X003000040048x
- Saltzman, A., Birol, E., Bouis, H.E., Boy, E., De Moura, F.F., Islam, Y., and Pfeiffer, W.H.. 2013. Biofortification: Progress toward a more nourishing future. Glob. Food Sec. 9–17. doi:10.1016/j.gfs.2012.12.003.
10.1016/j.gfs.2012.12.003 Google Scholar
- Sawaya, W.N., Khalil, J.K., and Safi, W.J.. 1984. Nutritional quality of pearl millet flour and bread. Plant Foods Hum. Nutr. 34: 117–125. doi: 10.1007/BF01094839
10.1007/BF01094839 Google Scholar
- Sequiera, E., Arruda, S., de Sousa, L., and de Souza, E.. 2001. Phytate iron from an alternative dietary supplement has no effect on the calcium, iron and zinc status in undernourished rats. Arch. Latinoam. Nutr. 51(3): 250–257.
- Shi, R., Zhang, Y., Chen, X., Sun, Q., Zhang, F., Römheld, V., and Zou, C.. 2010. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 51: 165–170. doi: 10.1016/j.jcs.2009.11.008
- Stangoulis, J.C.R., Huynh, B.-L., Welch, R.M., Choi, E.-Y., and Graham, R.D.. 2006. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154: 289–294. doi: 10.1007/s10681-006-9211-7
- Velu, G., Rai, K.N., Muralidharan, V., Kulkarni, V.N., Longvah, T., and Raveendran, T.S.. 2007. Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed. 126: 182–185. doi: 10.1111/j.1439-0523.2007.01322.x
- Velu, G., Rai, K.N., Muralidharan, V., Longvah, T., and Crossa, J.. 2011. Gene effects and heterosis for grain iron and zinc density in pearl millet [Pennisetum glaucum (L.) R. Brj. Euphytica 180: 251–259. doi: 10.1007/s10681-011-0387-0
- Velu, G., Rai, K.N., Sahrawat, K.L., and Sumalini, K.. 2008. Variability for grain iron and zinc contents in pearl millet hybrids. J. SAT Agric. Res. 6: 1–4.
- Velu, G., Singh, R.P., Huerta-Espino, J., Peña, R.J., Arun, B., Mahendru-Singh, A., Mujahid, M.Y., Sohu, V.S., Mavi, G.S., Crossa, J., Alvarado, G., Joshi, A.K., and Pfeiffer, W.H.. 2012. Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. F. Crop. Res. 137: 261–267. doi: 10.1016/j.fcr.2012.07.018
- White, P.J., and Broadley, M.R.. 2005. Biofortifying crops with essential mineral elements. Trends Plant Sci. 10: 586–593. doi: 10.1016/j.tplants.2005.10.001