Journal list menu
Genetic Effects of Chromosomes 1, 4, and 18 from Three Tetraploid Gossypium Species in Topcrosses with Five Elite Cultivars
Corresponding Author
Johnie N. Jenkins
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Corresponding author ([email protected]).Search for more papers by this authorJack C. McCarty Jr.
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorR. W. Hayes
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorJixiang Wu
Agronomy, Horticulture, and Plant Science Dep., South Dakota State Univ., Brookings, SD, 57007
Search for more papers by this authorSukumar Saha
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorD. M. Stelly
Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843-2474
Search for more papers by this authorCorresponding Author
Johnie N. Jenkins
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Corresponding author ([email protected]).Search for more papers by this authorJack C. McCarty Jr.
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorR. W. Hayes
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorJixiang Wu
Agronomy, Horticulture, and Plant Science Dep., South Dakota State Univ., Brookings, SD, 57007
Search for more papers by this authorSukumar Saha
USDA–ARS, P.O. Box 5367, Mississippi State, MS, 39762
Search for more papers by this authorD. M. Stelly
Dep. of Soil and Crop Sciences, Texas A&M Univ., College Station, TX, 77843-2474
Search for more papers by this authorAll rights reserved.
Joint contribution of USDA, ARS, Mississippi State, MS, Mississippi State University, South Dakota State University, and Texas A&M University. In cooperation with Mississippi State Agricultural and Forestry Experiment Station.
Assigned to Associate Editor Candice Hirsch.
Abstract
Chromosome substitution lines (CSLs) have been developed for selected chromosomes from two tetraploid species of Gossypium and are effective ways to target introgression of alleles from exotic tetraploid species into Upland cotton (G. hirsutum L.) Genetic effects of chromosomes 1, 4, and 18 from Upland cotton (TM-1), Pima cotton (G. barbadense L.), and Hawaiian cotton (G. tomentosum Nutt. ex Seem) were estimated by topcrossing TM-1 and six isochromosomal CSLs with five upland cultivars and comparing F2 and F3 hybrids for agronomic and fiber traits. Data were analyzed according to an additive–dominance (AD) model. Additive genetic effects were greater than dominance effects for lint percentage, fiber uniformity, fiber strength, and elongation; whereas, dominance effects were greater than additive effects for boll weight, lint yield, fiber length, and fiber micronaire. All additive × environment effects were small. Dominance × environment effects were only significant for boll weight, lint yield, and fiber micronaire. Chromosome B04 and B18 from Pima cotton and T01 from Hawaiian cotton had significantly greater additive effects for lint percentage than homologs. Chromosomes 1, 4, and 18 from the three species generally showed negative additive effect on lint yield compared with cultivars. Chromosome 1 from Hawaiian cotton had greater additive effects on fiber length than homologs. Chromosomes 1 and 4 from Pima cotton showed greater additive effects on fiber strength than homologs. The magnitude of additive effects on important agronomic and fiber traits show that Pima cotton and Hawaiian cotton harbor useful alleles for Upland cotton breeding programs.
References
- Al-QaudhyR.S., MorrisW.R. and MummR.F. 1988. Chromosomal locations of genes for traits associated with lodging in winter wheat. Crop Sci. 28: 631–635. doi:10.2135/cropsci1988.0011183X002800040012x
10.2135/cropsci1988.0011183X002800040012x Google Scholar
- BerkeT.G., BaenzigerP.S. and MorrisW.R. 1992a. Chromosomal location of wheat quantitative trait loci affecting agronomic performance using reciprocal chromosome substitutions. Crop Sci. 32: 621–627. doi:10.2135/cropsci1992.0011183X003200030010x
- BerkeT.G., BaenzigerP.S. and MorrisW.R. 1992b. Chromsomal location of wheat quantitative trait loci affecting stability of six traits, using reciprocal chromosome substitutions. Crop Sci. 32: 628–633. doi:10.2135/cropsci1992.0011183X003200030011x
- CampbellB.T., BaenzigerP.S., EskridgeK.M., BudakH., StreckN.A., WeissA., GillK.S. and EraymanM. 2004. Using environmental covariates to explain genotype × environment and QTL × environment interactions for agronomic traits on chromosome 3A of wheat. Crop Sci. 44: 620–627. doi:10.2135/cropsci2004.6200
- CampbellB.T., BaenzigerP.S., GillK.M., EskridgeK.M., BudakH., EraymenM. and YenY. 2003. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci. 43: 1493–1505. doi:10.2135/cropsci2003.1493
- EndrizziJ.E. 1963. Genetic analysis of six primary monosomes and one tertiary monosome in Gossypium hirsutum. Genetics 48: 1625–1633.
- EndrizziJ.E., TurcotteE.L. and KohelR.J. 1985. Genetics, cytology, and evolution of Gossypium. Adv. Genet. 23: 271–375. doi:10.1016/S0065-2660(08)60515-5
- JenkinsJ.N., McCartyJ.C.Jr, GutierrezO.A., HayesR.W. and JonesD.C. 2013. Registration of RMBUP-C4, a random-mated population with Gossypium barbadense L. alleles introgressed into Upland cotton germplasm. J. Plant Reg. 7: 224–228. doi:10.3198/jpr2012.08.0028crg
10.3198/jpr2012.08.0028crg Google Scholar
- JenkinsJ.N., McCartyJ.C., SahaS., GutierrezO., HayesR.W. and StellyD.M. 2006. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with Upland cotton cultivars: I. Yield and yield components. Crop Sci. 46: 1169–1178. doi:10.2135/cropsci2005.08-0269 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000237375900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
10.2135/cropsci2005.08-0269 Google Scholar
- JenkinsJ.N., McCartyJ.C., SahaS., GutierrezO., HayesR.W. and StellyD.M. 2007. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with Upland cotton cultivars: II. Fiber quality traits. Crop Sci. 47: 561–571. doi:10.2135/cropsci2006.06.0396 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000245735800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- JenkinsJ.N., McCartyJ.C.Jr, WuJ. and GutierrezO.A. 2009. Genetic variance components and genetic effects among eleven diverse Upland cotton lines and their F2 hybrids. Euphytica 167: 397–408. doi:10.1007/s10681-009-9902-y http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000265788400012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- JenkinsJ.N., McCartyJ.C., WuJ., HayesR.W. and StellyD.M. 2012. Genetic effects of nine Gossypium barbadense L. chromosome substitution lines in top crosses with five elite Upland cotton G. hirsutum L. cultivars. Euphytica 187: 161–173. doi:10.1007/s10681-011-0580-1 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000308045200002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
10.1007/s10681-011-0580-1 Google Scholar
- KaepplerS.M. 1997. Quantitative trait locus mapping using set of near-isogenic lines: Relative power comparisons and technical considerations. Theor. Appl. Genet. 95: 384–392. doi:10.1007/s001220050574
- KohelR.J., EndrezziJ.E. and WhiteT.G. 1977. An evaluation of Gossypium barbadense L., chromosome 6 and 17 in the G. hirsutum L. genome. Crop Sci. 17: 404–406. doi:10.2135/cropsci1977.0011183X001700030016x
- KohelR.J., YuJ., ParkY. and LazoG.R. 2001. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121: 163–172. doi:10.1023/A:1012263413418
- LawC.N. 1966. The genetic location of genetic factors affecting quantitative character in wheat. Genetics 53: 487–498.
- MaJ.Z. and KohelR.J. 1983. Evaluation of 6 substitution lines in cotton. Acta Agron. Sin. 9: 145–150.
- MansurL.M., QualsetC.O., KasardaD.D. and MorrisR. 1990. Effects of ‘Cheyenne’ chromosome on milling quality and baking quality of ‘Chinese Spring’ wheat in relation to glutenin and gliadin storage protein. Crop Sci. 30: 593–602. doi:10.2135/cropsci1990.0011183X003000030026x
- McCartyJ.C., JenkinsJ.N. and WuJ. 2004a. Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement. I. Phenotypic values and variance components. Crop Sci. 44: 1226–1230. doi:10.2135/cropsci2004.1226
10.2135/cropsci2004.1226 Google Scholar
- McCartyJ.C., JenkinsJ.N. and WuJ. 2004b. Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement. II. Genetic effects and genotypic values. Crop Sci. 44: 1231–1236. doi:10.2135/cropsci2004.1231
- McCartyJ.C., WuJ. and JenkinsJ.N. 2007. Use of primitive derived cotton accessions for agronomic and fiber trait improvement: Variance components and genetic effects. Crop Sci. 47: 100–110. doi:10.2135/cropsci2006.06.0404 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000244430100012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
10.2135/cropsci2006.06.0404 Google Scholar
- MengistuN., BaenzigerP.S., EskridgeK.M., DweikatI., WeguloS.N., GillK.S. and Mujeeb-KaziA. 2012. Validation of QTL for grain yield-related traits on wheat chromosome 3A using recombination inbred chromosome lines. Crop Sci. 52: 1622–1632. doi:10.2135/cropsci2011.12.0677 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000305804900017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- RaoC.R. 1971. Estimation of variance and covariance components MINQUE theory. J. Multivariate Anal. 1: 257–275. doi:10.1016/0047-259X(71)90001-7
10.1016/0047-259X(71)90001-7 Google Scholar
- SahaS., JenkinsJ.N., WuJ., McCartyJ.C., GutierrezO.A., PercyR.G., CantrellR.C. and StellyD.M. 2006. Effects of chromosome specific introgression in upland cotton on fiber and agronomic traits. Genetics 172: 1927–1938. doi:10.1534/genetics.105.053371
- SahaS., JenkinsJ.N., WuJ., McCartyJ.C. and StellyD.M. 2008. Genetic analysis of agronomic and fiber traits using four interspecific chromosome substitution lines in cotton. Plant Breed. 127: 612–618. doi:10.1111/j.1439-0523.2008.01532.x http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000261207800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- SahaS., StellyD.M., RaskD.A., WuJ., JenkinsJ.N., McCartyJ.C., MakamovA., GotmareV., AbdurakhmonovI.Y. and CampbellB.T. 2011a. Chromosome substitution lines: Concepts, development and utilization in the genetic improvement of Upland cotton. In: I.Y. Abdurakhmonov, editor, Plant breeding. InTech, Croatia. p. 107–128. doi:10.5772/35585
- SahaS., WuJ., JenkinsJ.N., McCartyJ.C.Jr, GutierrezO.A., StellyD.M., PercyR.G. and RaskaD.A. 2004. Effect of chromosome substitutions from Gossypium barbadense L 3-79 into G. hirsutum L., TM-1 on agronomic and fiber traits. J. Cotton Sci. 8: 162–169.
- SahaS., WuJ., JenkinsJ.N., McCartyJ.C., HayesR. and StellyD.M. 2010. Genetic dissection of chromosome substitution lines of cotton to discover novel Gossypium barbadense L. alleles for improvement of agronomic traits. Theor. Appl. Genet. 120: 1193–1205. doi:10.1007/s00122-009-1247-3 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000275661300013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
10.1007/s00122-009-1247-3 Google Scholar
- SahaS., WuJ., JenkinsJ.N., McCartyJ.C., HayesR.W. and StellyD.M. 2011b. Delineation of interspecific epistasis on fiber quality traits in Gossypium hirsutum by ADAA analysis of intermated G. barbadense chromosome substitution lines. Theor. Appl. Genet. 122: 1351–1361. doi:10.1007/s00122-011-1536-5
10.1007/s00122-011-1536-5 Google Scholar
- SahaS., WuJ., JenkinsJ.N., McCartyJ.C. and StellyD.M. 2013. Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor. Appl. Genet. 126: 109–117. doi:10.1007/s00122-012-1965-9 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000313056900011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- SAS Institute. 2013. SAS system for Windows. v. 9.4. SAS Inst. Inc., Cary, NC.
- ShahM.M., GillK.S., BaenzigerP.S., YenY., KaepplerS.M. and AriyarathneH.M. 1999. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39: 1728–1732. doi:10.2135/cropsci1999.3961728x
- StellyD.M., SahaS., RaskaD.A., JenkinsJ.N., McCartyJ.C. and GutierrezO.A. 2005. Registration of 17 Upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitution. Crop Sci. 45: 2663–2665. doi:10.2135/cropsci2004.0642
- WuJ., BondalapatiK., GloverK., BerzonskyW., JenkinsJ.N. and McCartyJ.C. 2013. Genetic analysis without replications: Model evaluation and application in spring wheat. Euphytica 190: 447–458. doi:10.1007/s10681-012-0835-5 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000316758300011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
10.1007/s10681-012-0835-5 Google Scholar
- WuJ., JenkinsJ.N. and McCartyJ.C. 2010. A generalized approach and computer tool for quantitative genetics study. In: W. Song, editor, Proc. of the 22nd Annual Conf. on Applied Statistics in Agriculture, Kansas State University, Manhattan, KS. 25–27 Apr. 2010. p. 85–106.
- WuJ., JenkinsJ.N. and McCartyJ.C. 2014. qgtools: Tools for quantitative genetics data analyses. https://rdrr.io/cran/qgtools/man/qgtools-package.html
- WuJ., JenkinsJ.N., McCartyJ.C. and GloverK. 2012. Detecting epistatic effects associated with cotton traits by a modified MDR approach. Euphytica 197: 289–301. doi:10.1007/s10681-012-0770-5
- YenY. and BaenzigerP.S. 1992. A better way to construct recombinant chromosome lines and their controls. Genome 35: 827–830. doi:10.1139/g92-125
- YenY., BaenzigerP.S., BrunsR., ReederJ., Moreno-SevillaB. and BudakN. 1997. Agronomic performance of hybrids between cultivars and chromosome substitution lines. Crop Sci. 37: 396–399. doi:10.2135/cropsci1997.0011183X003700020015x
- ZemetraR.S. and MorrisW.R. 1968. Effects of an intercultivaral chromosome substitution on winterhardiness and vernalization in wheat. Genetics 119: 453–456.
- ZemetraR.S., MorrisW.R. and SchmidtJ.W. 1986. Gene locations for heading date using reciprocal chromosome substitutions in winter wheat. Crop Sci. 26: 531–533. doi:10.2135/cropsci1986.0011183X002600030020x
10.2135/cropsci1986.0011183X002600030020x Google Scholar
- ZhangJ. 2014. R. G. Percy, and J.C. McCarty. 2014. Introgression genetics and breeding between Upland and Pima cotton: A review. Euphytica 198: 1–12. doi:10.1007/s10681-014-1094-4 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000336986200001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- ZhuJ. 1989. Estimation of genetic variance components in the general mixed model. Ph.D. diss. North Carolina State University, Raleigh.
- ZhuJ. 1993. Methods of predicting genotype value and heterosis for offspring of hybrids. (in Chinese with English abstract) J. Biomathematics 8: 32–40.