Journal list menu
Food-Grade Maize Composition, Evaluation, and Genetics for Masa-Based Products
Mark Holmes
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorJonathan S. Renk
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorGeorge Annor
Dep. of Food Science and Nutrition, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorCorresponding Author
Candice N. Hirsch
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Corresponding author ([email protected]).Search for more papers by this authorMark Holmes
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorJonathan S. Renk
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorGeorge Annor
Dep. of Food Science and Nutrition, Univ. of Minnesota, St. Paul, MN, 55108
Search for more papers by this authorCorresponding Author
Candice N. Hirsch
Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, St. Paul, MN, 55108
Corresponding author ([email protected]).Search for more papers by this authorPepsiCo employees: The views expressed in this manuscript are those of the author(s) and do not necessarily reflect the position or policy of PepsiCo.
ABSTRACT
Maize (Zea mays L.) masa (dough or flour that is soaked and cooked in an alkaline solution in the nixtamlization process) based products have been consumed by humans worldwide for thousands of years. Still, there is not a comprehensive understanding of the chemical and physical properties of maize that contribute to masa quality. Starches and proteins affect the alkaline processing of maize but are seldom discussed in a holistic way to understand their individual and combined effects on masa production, particularly in the context of the entire food system from breeding to evaluation to product development and production. In this review, the food-grade maize production chain is described including current breeding efforts and grain evaluation methods. The compositions of starches and prolamin proteins are also discussed relative to their effect on masa properties. Understanding the interactions of grain endosperm components and final product quality of maize masa-based products will allow for more efficient breeding and food processing operations in the future.
References
- Almeida-Dominguez, H., Suhendro, E., and Rooney, L.. 1997. Factors affecting Rapid Visco Analyser curves for the determination of maize kernel hardness. J. Cereal Sci. 25: 93–102. doi:10.1006/jcrs.1996.0072
- Armstrong, P.R., Lingenfelser, J.E., and McKinney, L.. 2007. The effect of moisture content on determining corn hardness from grinding time, grinding energy, and near-infrared spectroscopy. Appl. Eng. Agric. 23: 793–799. doi:10.13031/2013.24046
- Barbosa-Cánovas, G.V., Kokini, J.L., Ma, L., and Ibarz, A.. 1996. The rheology of semiliquid foods. Adv. Food Nutr. Res. 39: 1–69. doi:10.1016/S1043-4526(08)60073-X
- Batey, I.L., Curtin, B.M., and Ryde, N.. 1996. Measurement of amylose/amylopectin ratio by high-performance liquid chromatography. Starch 48: 338–344. doi:10.1002/star.19960480907
- Becraft, P.W., and Yi, G.. 2011. Regulation of aleurone development in cereal grains. J. Exp. Bot. 62: 1669–1675. doi:10.1093/jxb/erq372
- Bergquist, R., and Thompson, D.. 1992. Corn grain density characterized by two specific gravity techniques. Crop Sci. 32: 1287–1290. doi:10.2135/cropsci1992.0011183X003200050045x
- Bertoft, E. 2004. On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr. Polym. 57: 211–224. doi:10.1016/j.carbpol.2004.04.015
- Bertoft, E. 2017. Understanding starch structure: Recent progress. Agronomy 7: 56. doi:10.3390/agronomy7030056
- Bertoft, E., Annor, G., Shen, X., Rumpagaporn, P., Seetharaman, K., and Hamaker, B.R.. 2016. Small differences in amylopectin fine structure may explain large functional differences of starch. Carbohydr. Polym. 140: 113–121. doi:10.1016/j.carbpol.2015.12.025
- Bertoft, E., Piyachomkwan, K., Chatakanonda, P., and Sriroth, K.. 2008. Internal unit chain composition in amylopectins. Carbohydr. Polym. 74: 527–543. doi:10.1016/j.carbpol.2008.04.011
- Blandino, M., Mancini, M.C., Peila, A., Rolle, L., Vanara, F., and Reyneri, A.. 2010. Determination of maize kernel hardness: Comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 90: 1870–1878. doi:10.1002/jsfa.4027
- Blauth, S.L., Kim, K.N., Klucinec, J., Shannon, J.C., Thompson, D., and Guiltinan, M.. 2002. Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol. Biol. 48: 287–297. doi:10.1023/A:1013335217744
- Blauth, S.L., Yao, Y., Klucinec, J.D., Shannon, J.C., Thompson, D., and Guiltinan, M.. 2001. Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol. 125: 1396–1405.
- Bogracheva, T.Y., Wang, Y.L., and Hedley, C.L.. 2001. The effect of water content on the ordered/disordered structures in starches. Biopolymers 58: 247–259. doi:
- Borovsky, D., Smith, E.E., Whelan, W.J., French, D., and Kikumoto, S.. 1979. The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch. Biochem. Biophys. 198: 627–631. doi:10.1016/0003-9861(79)90540-X
- Buléon, A., Colonna, P., Planchot, V., and Ball, S.. 1998. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 23: 85–112. doi:10.1016/S0141-8130(98)00040-3
- Cavanaugh, K.J., Zehr, B.E., Nyquist, W.E., Hamaker, B.R., and Crane, P.L.. 1995. Responses to selection for endosperm hardness and associated changes in agronomic traits after four cycles of recurrent selection in maize. Crop Sci. 35: 745–748. doi:10.2135/cropsci1995.0011183X003500030018x
- Chandrashekar, A., and Mazhar, H.. 1999. The biochemical basis and implications of grain strength in sorghum and maize. J. Cereal Sci. 30: 193–207. doi:10.1006/jcrs.1999.0264
- Chateigner-Boutin, A.-L., Ordaz-Ortiz, J.J., Alvarado, C., Bouchet, B., Durand, S., and Verhertbruggen, Y. et al 2016. Developing pericarp of maize: A model to study arabinoxylan synthesis and feruloylation. Front. Plant Sci. 7: 1476. doi:10.3389/fpls.2016.01476
- Coleman, C.E., Lopes, M.A., Gillikin, J.W., Boston, R.S., and Larkins, B.A.. 1995. A defective signal peptide in the maize high-lysine mutant floury 2. Proc. Natl. Acad. Sci. USA 92: 6828–6831. doi:10.1073/pnas.92.15.6828
- Debet, M.R., and Gidley, M.J.. 2006. Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydr. Polym. 64: 452–465. doi:10.1016/j.carbpol.2005.12.011
- Doehlert, D.C., and Knutson, C.A.. 1991. Two classes of starch debranching enzymes from developing maize kernels. J. Plant Physiol. 138: 566–572. doi:10.1016/S0176-1617(11)80242-7
- Dombrink-Kurtzman, M.A., and Bietz, J.A.. 1993. Zein composition in hard and soft endosperm of maize. Cereal Chem. 70: 105–108.
- Dumas, J.B.A. 1831. Procedes de I'analyse organique. Ann. Chim. Phys. 47: 198–205.
- Duquette, D., and Dumont, M.-J.. 2018. Influence of chain structures of starch on water absorption and copper binding of starch-graft-itaconic acid hydrogels. Starch 70:1700271. doi:10.1002/star.201700271
- Duvick, D.N., and Cassman, K.G.. 1999. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci. 39: 1622–1630. doi:10.2135/cropsci1999.3961622x
- Ezeogu, L.I., Duodu, K.G., and Taylor, J.R.N.. 2005. Effects of endosperm texture and cooking conditions on the in vitro starch digestibility of sorghum and maize flours. J. Cereal Sci. 42: 33–44. doi:10.1016/j.jcs.2005.02.002
- Flint-Garcia, S.A., Bodnar, A.L., and Scott, M.P.. 2009. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 119: 1129–1142. doi:10.1007/s00122-009-1115-1
- Fox, G., and Manley, M.. 2009. Hardness methods for testing maize kernels. J. Agric. Food Chem. 57: 5647–5657. doi:10.1021/jf900623w
- Fredriksson, H., Silverio, J., Andersson, R., Eliasson, A.-C., and Åman, P.. 1998. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Polym. 35: 119–134. doi:10.1016/S0144-8617(97)00247-6
- French, D. 1972. Fine structure of starch and its relationship to the organization of starch granules. J. Jpn. Soc. Starch Sci. 19: 8–25. doi:10.5458/jag1972.19.8
- Gamble, M.H., and Rice, P.. 1988. The effect of slice thickness on potato crisp yield and composition. J. Food Eng. 8: 31–46. doi:10.1016/0260-8774(88)90034-9
10.1016/0260?8774(88)90034?9 Google Scholar
- Gao, M., Wanat, J., Stinard, P.S., James, M.G., and Myers, A.M.. 1998. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10: 399–412. doi:10.1105/tpc.10.3.399
- García-Rosas, M., Bello-Pérez, A., Yee-Madeira, H., Ramos, G., Flores-Morales, A., and Mora-Escobedo, R.. 2009. Resistant starch content and structural changes in maize (Zea mays) tortillas during storage. Starch 61: 414–421. doi:10.1002/star.200800147
- Gibbon, B.C., and Larkins, B.A.. 2005. Molecular genetic approaches to developing quality protein maize. Trends Genet. 21: 227–233. doi:10.1016/j.tig.2005.02.009
- Gibson, T.S., Solah, V.A., and McCleary, B.V.. 1997. A procedure to measure amylose in cereal starches and flours with concanavalin A. J. Cereal Sci. 25: 111–119. doi:10.1006/jcrs.1996.0086
- Gidley, M.J. 1989. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules 22: 351–358. doi:10.1021/ma00191a064
- Gomez, M., Lee, J., and McDonough, C.. 1992. Corn starch changes during tortilla and tortilla chip processing. Cereal Chem. 69: 275–279.
- Gomez, M.H., Waniska, R.D., and Rooney, L.W.. 1990. Effects of nixtamalization and grinding conditions on the starch in masa. Starch 42: 475–482. doi:10.1002/star.19900421207
- Greene, T.W., and Hannah, L.C.. 1998. Maize endosperm ADP–glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions. Plant Cell 10: 1295–1306. doi:10.1105/tpc.10.8.1295
- Gunasekaran, S., Cooper, T.M., Berlage, A.G., Berlage, A.G., Member, A., Affiliate, A., and Asae, A.M.. 1988. Evaluating quality factors of corn and soybeans using a computer vision system. Trans. ASAE 31: 1264–1271. doi:10.13031/2013.30856
10.13031/2013.30856 Google Scholar
- Gwirtz, J.A., and Garcia-Casal, M.N.. 2014. Processing maize flour and corn meal food products. Ann. N. Y. Acad. Sci. 1312: 66–75. doi:10.1111/nyas.12299
- Hannah, L.C., and Boehlein, S.. 2017. Starch biosynthesis in maize endosperm. In: B. Larkins, editor, Maize kernel development. CABI, Wallingford, UK. p. 149–159. doi:10.1079/9781786391216.0149
10.1079/9781786391216.0149 Google Scholar
- Hizukuri, S. 1986. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147: 342–347. doi:10.1016/S0008-6215(00)90643-8
- Hizukuri, S., Takeda, Y., Yasuda, M., and Suzuki, A.. 1981. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94: 205–213. doi:10.1016/S0008-6215(00)80718-1
- Holding, D.R., Meeley, R.B., Hazebroek, J., Selinger, D., Gruis, F., Jung, R., and Larkins, B.A.. 2010. Identification and characterization of the maize arogenate dehydrogenase gene family. J. Exp. Bot. 61: 3663–3673. doi:10.1093/jxb/erq179
- Holding, D.R., Otegui, M.S., Li, B., Meeley, R.B., Dam, T., and Hunter, B.G. et al 2007. The maize Floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19: 2569–2582. doi:10.1105/tpc.107.053538
- Htoon, A., Shrestha, A.K., Flanagan, B.M., Lopez-Rubio, A., Bird, A.R., Gilbert, E.P., and Gidley, M.J.. 2009. Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr. Polym. 75: 236–245. doi:10.1016/j.carbpol.2008.06.016
- Huang, D.P., and Rooney, L.W.. 2001. Starches for snack foods. In: E.W. Lusas, L.W. Rooney, editors, Snack foods processing. CRC Press, Boca Raton, FL. p. 115–130.
10.1201/9781420012545.ch5 Google Scholar
- Hunter, B.G., Beatty, M.K., Singletary, G.W., Hamaker, B.R., Dilkes, B.P., Larkins, B.A., and Jung, R.. 2002. Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14: 2591–2612. doi:10.1105/tpc.003905
- Imberty, A., and Perez, S.. 1988. A revisit to the three-dimensional structure of B-type starch. Biopolymers 27: 1205–1221. doi:10.1002/bip.360270803
- Jackson, D.S., Rooney, L.W., Kunze, R., and Waniska, R.D.. 1988. Alkaline processing properties of stress-cracked and broken corn (Zea mays L.). Cereal Chem. 65: 133–137.
- James, M.G., Robertson, D.S., and Myers, A.M.. 1995. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7: 417–429. doi:10.1105/tpc.7.4.417
- Jane, J., Chen, Y.Y., Lee, L.F., McPherson, A.E., Wong, K.S., Radosavljevic, M., and Kasemsuwan, T.. 1999. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76: 629–637. doi:10.1094/CCHEM.1999.76.5.629
- Jenkins, P.J., and Donald, A.M.. 1995. The influence of amylose on starch granule structure. Int. J. Biol. Macromol. 17: 315–321. doi:10.1016/0141-8130(96)81838-1
- Jeon, J.-S., Ryoo, N., Hahn, T.-R., Walia, H., and Nakamura, Y.. 2010. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48: 383–392. doi:10.1016/j.plaphy.2010.03.006
- Kaur, B., Ariffin, F., Bhat, R., and Karim, A.A.. 2012. Progress in starch modification in the last decade. Food Hydrocoll. 26: 398–404. doi:10.1016/j.foodhyd.2011.02.016
- Kawas, M.L., and Moreira, R.G.. 2001. Effect of degree of starch gelatinization on quality attributes of fried tortilla chips. J. Food Sci. 66: 300–306. doi:10.1111/j.1365-2621.2001.tb11336.x
- Keeling, P.L., and Myers, A.M.. 2010. Biochemistry and genetics of starch synthesis. Ann. Rev. Food Sci. Technol. 1: 271–303. doi:10.1146/annurev.food.102308.124214
- Kim, C.S., Hunter, B.G., Kraft, J., Boston, R.S., Yans, S., Jung, R., and Larkins, B.A.. 2004. A defective signal peptide in a 19-kD α-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol. 134: 380–387. doi:10.1104/pp.103.031310
- Kirleis, A.W., Crosby, K.D., and Housley, T.L.. 1984. A method for quantitatively measuring vitreous endosperm area in sectioned sorghum grain. Cereal Chem. 61: 556–558.
- Kirleis, A.W., and Stroshine, R.L.. 1990. Effects of hardness and drying air temperature on breakage susceptibility and dry-milling characteristics of yellow dent corn. Cereal Chem. 67: 523–528.
- Kirsten, W.J., and Hesselius, G.U.. 1983. Rapid, automatic, high capacity dumas determination of nitrogen. Microchem. J. 28: 529–547. doi:10.1016/0026-265X(83)90011-5
- Kjeldahl, J.G.C.T. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 22: 366–382. doi:10.1007/BF01338151
10.1007/BF01338151 Google Scholar
- Kubo, A., Colleoni, C., Dinges, J.R., Lin, Q., Lappe, R.R., and Rivenbark, J.G. et al 2010. Function of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol. 153: 956–969. doi:10.1104/pp.110.155259
- Kulp, K., and Lorenz, K.. 1981. Heat-moisture treatment of starches. I. Physicochemical properties. Cereal Chem. 58: 46–48.
- Larkins, B.A., Pedersen, K., Marks, M.D., and Wilson, D.R.. 1984. The zein proteins of maize endosperm. Trends Biochem. Sci. 9: 306–308. doi:10.1016/0968-0004(84)90297-4
- Lee, K.M., Herrman, T.J., Rooney, L., Jackson, D.S., Lingenfelser, J., and Rausch, K.D. et al 2007. Corroborative study on maize quality, dry-milling and wet-milling properties of selected maize hybrids. J. Agric. Food Chem. 55: 10751–10763. doi:10.1021/jf071863f
- Lee, E.A., Young, J.A., Frégeau-Reid, J.A., and Good, B.G.. 2012. Genetic architecture underlying kernel quality in food-grade maize. Crop Sci. 52: 1561–1571. doi:10.2135/cropsci2011.10.0545
- Lending, C.R., and Larkins, B.A.. 1989. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1: 1011–1023. doi:10.1105/tpc.1.10.1011
- Li, C., Qiao, Z., Qi, W., Wang, Q., Yuan, Y., and Yang, X. et al 2015. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell 27: 532–545. doi:10.1105/tpc.114.134858
- Li, P.X.P., Hardacre, A.K., Campanella, O.H., and Kirkpatrick, K.J.. 1996. Determination of endosperm characteristics of 38 corn hybrids using the Stenvert hardness test. Cereal Chem. 73: 466–471.
- Liu, H., Shi, J., Sun, C., Gong, H., Fan, X., and Qiu, F. et al 2016. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize. Proc. Natl. Acad. Sci. USA 113: 4964–4969. doi:10.1073/pnas.1601352113
- Lopes, M.A., and Larkins, B.A.. 1991. Gamma-zein content is related to endosperm modification in quality protein maize. Crop Sci. 31: 1655–1662. doi:10.2135/cropsci1991.0011183X003100060055x
- Louis-Alexandre, A., Mestres, C., and Faure, J.. 1991. Measurement of endosperm vitreousness of corn: A quantitative method and its application to African cultivars. Cereal Chem. 68: 614–617.
- Martin, C., and Smith, A.M.. 1995. Starch biosynthesis. Plant Cell 7: 971–985. doi:10.1105/tpc.7.7.971
- Martin, M., and Fitzgerald, M.A.. 2002. Proteins in rice grains influence cooking properties! J. Cereal Sci. 36: 285–294. doi:10.1006/jcrs.2001.0465
- Martínez-Bustos, F., Martínez-Flores, H.E., Sanmartín-Martínez, E., Sánchez-Sinencio, F., Chang, Y.K., Barrera-Arellano, D., and Rios, E.. 2001. Effect of the components of maize on the quality of masa and tortillas during the traditional nixtamalisation process. J. Sci. Food Agric. 81: 1455–1462. doi:10.1002/jsfa.963
- Mejías, J.H., Lu, X., Osorio, C., Ullman, J.L., von Wettstein, D., and Rustgi, S.. 2014. Analysis of wheat prolamins, the causative agents of celiac sprue, using reversed phase high performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Nutrients 6: 1578–1597. doi:10.3390/nu6041578
- Miles, M.J., Morris, V.J., Orford, P.D., and Ring, S.G.. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135: 271–281. doi:10.1016/S0008-6215(00)90778-X
- Mondragón, M., Bello-Pérez, L.A., Agama, E., Melo, A., Betancur-Ancona, D., and Peña, J.L.. 2004. Effect of nixtamalization on the modification of the crystalline structure of maize starch. Carbohydr. Polym. 55: 411–418. doi:10.1016/j.carbpol.2003.11.006
- Moose, S.P., Dudly, J.W., and Rocheford, T.R.. 2004. Maize selection passes the century mark: A unique resource for 21st century genomics. Trends Plant Sci. 9: 358–364. doi:10.1016/j.tplants.2004.05.005
- Moreira, R.G., Sun, X., and Chen, Y.. 1997. Factors affecting oil uptake in tortilla chips in deep-fat frying. J. Food Eng. 31: 485–498. doi:10.1016/S0260-8774(96)00088-X
- Morrison, W.R., and Laignelet, B.. 1983. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9–20. doi:10.1016/S0733-5210(83)80004-6
- Mua, J.P., and Jackson, D.S.. 1997. Relationships between functional attributes and molecular structures of amylose and amylopectin fractions from corn starch. J. Agric. Food Chem. 45: 3848–3854. doi:10.1021/jf9608783
- Muench, D.G., Ogawa, M., and Okita, T.W.. 1999. The prolamins of rice In: P.R. Shewry, R. Casey, editors, Seed proteins. Springer, Dordrecht, the Netherlands. p. 93–108. doi:10.1007/978-94-011-4431-5_5
- Mullins, W.R., Harrington, W.O., Olson, R.L., Wood, E.R., and Nutting, M.D.. 1955. Estimation of free starch in potato granules and its relation to consistency of reconstituted product. Food Technol. 9: 393–395.
- Nago, M., Akissoë, N., Matencio, F., and Mestres, C.. 1997. End use quality of some African corn kernels. 1. Physicochemical characteristics of kernels and their relationship with the quality of “Lifin”, a traditional whole dry-milled maize flour from Benin. J. Agric. Food Chem. 45: 555–564. doi:10.1021/jf9507957
- Narváez-González, E.D., de Dios Figueroa-Cárdenas, J., Taba, S., Tostado, E.C., Peniche, R.Á.M., and Sánchez, F.R.. 2006. Relationships between the microstructure, physical features, and chemical composition of different maize accessions from Latin America. Cereal Chem. 83: 595–604. doi:10.1094/CC-83-0595
- Peat, S., Whelan, W.J., and Thomas, G.J.. 1952. Evidence of multiple branching in waxy maize starch. J. Chem. Soc. 1952: 4536–4538.
- Pérez, S., and Bertoft, E.. 2010. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch 62: 389–420. doi:10.1002/star.201000013
- Pomeranz, Y., Czuchajowska, Z., Martin, C.R., and Lai, F.S.. 1985. Determination of corn hardness by the Stenvert hardness tester. Cereal Chem. 62: 108–112.
- Prasanna, B.M., Vasal, S.K., Kassahun, B., and Singh, N.N.. 2001. Quality protein maize. Curr. Sci. 81: 1308–1319.
- Pratt, R.C., Paulis, J.W., Miller, K., Nelsen, T., and Bietz, J.A.. 1995. Association of zein classes with maize kernel hardness. Cereal Chem. 72: 162–167.
- Rahman, A., Wong, K.S., Jane, J.L., Myers, A.M., and James, M.G.. 1998. Characterization of SU1 isoamylase, a determinant of storage starch structure in maize. Plant Physiol. 117: 425–435. doi:10.1104/pp.117.2.425
- Ratnayake, W.S., and Jackson, D.S.. 2006. Gelatinization and solubility of corn starch during heating in excess water: New insights. J. Agric. Food Chem. 54: 3712–3716. doi:10.1021/jf0529114
- Reynolds, T.L., Nemeth, M.A., Glenn, K.C., Ridley, W.P., and Astwood, J.D.. 2005. Natural variability of metabolites in maize grain: Differences due to genetic background. J. Agric. Food Chem. 53: 10061–10067. doi:10.1021/jf051635q
- Rolletschek, H., Borisjuk, L., Hennen-Bierwagen, T.A., and Myers, A.M.. 2017. Central metabolism and its spatial heterogeneity in maize endosperm. In: B. Larkins, editor, Maize kernel development. CABI, Wallingford, UK. p. 134–148.
10.1079/9781786391216.0134 Google Scholar
- Rooney, L.W., and Serna-Saldivar, S.O.. 1987. Food uses of whole corn and dry-milled fractions. In: S.A. Watson, P.E. Ramstad, editors, Corn chemistry and technology. Am. Assoc. Cereal Chem., St. Paul, MN.
- Rooney, L.W., and Suhendro, E.L.. 2001. Food quality of corn. In: E.W. Lusas, L.W. Rooney, editors, Snack foods processing. CRC Press, Boca Raton, FL. p. 39–71.
10.1201/9781420012545.sec2 Google Scholar
- Sanders, E., Thompson, D., and Boyer, C.. 1990. Thermal behavior during gelatinization and amylopectin fine structure for selected maize genotypes as expressed in four inbred lines. Cereal Chem. 67: 594–602.
- Sandhu, K.S., and Singh, N.. 2007. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 101: 1499–1507. doi:10.1016/j.foodchem.2006.01.060
- Schmidt, R.J., Burr, F.A., Aukerman, M.J., and Burr, B.. 1990. Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA 87: 46–50. doi:10.1073/pnas.87.1.46
- Serna-Saldivar, S.O., Almeida-Dominguez, H.D., Gomez, M.H., Bockholt, A.J., and Rooney, L.W.. 1991. Method to evaluate ease of pericarp removal on lime-cooked corn kernels. Crop Sci. 31: 842–844. doi:10.2135/cropsci1991.0011183X003100030059x
- Serna-Saldivar, S.O., Tellez-Giron, A., and Rooney, L.W.. 1988. Production of tortilla chips from sorghum and maize. J. Cereal Sci. 8: 275–284. doi:10.1016/S0733-5210(88)80039-0
- Shandera, D.L., Jackson, D.S., and Johnson, B.E.. 1997. Quality factors impacting processing of maize dent hybrids. Maydica 42: 281–289.
- Shannon, J.C., Pien, F.M., Cao, H., and Liu, K.C.. 1998. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol. 117: 1235–1252. doi:10.1104/pp.117.4.1235
- Shewry, P.R., Halford, N.G., Belton, P.S., and Tatham, A.S.. 2002. The structure and properties of gluten: An elastic protein from wheat grain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357: 133–142. doi:10.1098/rstb.2001.1024
- Shewry, P.R., Miflin, B.J., and Kasarda, D.D.. 1984. The structural and evolutionary relationships of the prolamin storage proteins of barley, rye and wheat. Philos. Trans. R. Soc., B 304: 297–308. doi:10.1098/rstb.1984.0025
- Shewry, P.R., Popineau, Y., Lafiandra, D., and Belton, P.. 2000. Wheat glutenin subunits and dough elasticity: Findings of the EUROWHEAT project. Trends Food Sci. Technol. 11: 433–441. doi:10.1016/S0924-2244(01)00035-8
- Shewry, P.R., Tatham, A.S., Field, J.M., Fords, B.G., Clark, J., and Gallois, P. et al 1988. The structures of barley and wheat prolamins and their genes. Biochem. Physiol. Pflanz. 183: 117–127. doi:10.1016/S0015-3796(88)80085-4
- Shewry, P.R., Tatham, A.S., and Halford, N.G.. 1999. The prolamins of the Triticeae In: P.R. Shewry, R. Casey, editors, Seed proteins. Springer, Dordrecht, the Netherlands. p. 35–78. doi:10.1007/978-94-011-4431-5_3
10.1007/978-94-011-4431-5_3 Google Scholar
- Shull, J.M., Watterson, J.J., and Kirleis, A.W.. 1991. Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure. J. Agric. Food Chem. 39: 83–87. doi:10.1021/jf00001a015
- Singh, N., Kaur, A., and Shevkani, K.. 2014. Maize: Grain structure, composition, milling, and starch characteristics. In: D.P. Chaudhary et al, editors, Maize: Nutrition dynamics and novel uses. Springer, New Delhi. p. 65–76. doi:10.1007/978-81-322-1623-0_5
10.1007/978-81-322-1623-0_5 Google Scholar
- Stenvert, N.L. 1974. Grinding resistance. A simple measure of wheat hardness. J. Flour Anim. Feed Milling 156: 24–25.
- Stinard, P.S., Robertson, D.S., and Schnable, P.S.. 1993. Genetic isolation, cloning and analysis of a mutator-induced, dominant antimorph of the maize amylose extender1 locus. Plant Cell 5: 1555–1566. doi:10.1105/tpc.5.11.1555
- Takeda, Y., Hizukuri, S., and Juliano, B.O.. 1987. Structures of rice amylopectins with low and high affinities for iodine. Carbohydr. Res. 168: 79–88. doi:10.1016/0008-6215(87)80008-3
- Thompson, D.L., and Goodman, M.M.. 2006. Increasing kernel density for two inbred lines of maize. Crop Sci. 46: 2179–2182. doi:10.2135/cropsci2006.02.0111
- Thompson, R.A., and Isaacs, G.W.. 1967. Porosity determinations of grains and seeds with an air-comparison pycnometer. Trans. ASAE 10: 693–696. doi:10.13031/2013.39763
10.13031/2013.39763 Google Scholar
- Tsai, C.Y. 1974. The function of waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11: 83–96.
- USDA NASS. 2017. Crop production report. USDA Natl. Agric. Stat. Serv. https://www.nass.usda.gov/Publications/Todays_Reports/reports/crop1117.pdf (accessed 28 Apr. 2019).
- Vamadevan, V., Bertoft, E., and Seetharaman, K.. 2013a. On the importance of organization of glucan chains on thermal properties of starch. Carbohydr. Polym. 92: 1653–1659. doi:10.1016/j.carbpol.2012.11.003
- Vamadevan, V., Bertoft, E., Soldatov, D.V., and Seetharaman, K.. 2013b. Impact on molecular organization of amylopectin in starch granules upon annealing. Carbohydr. Polym. 98: 1045–1055. doi:10.1016/j.carbpol.2013.07.006
- Vasal, S.K. 2004. The role of high lysine cereals in animal and human nutrition in Asia. In: Protein sources for the animal feed industry. Expert Consultation and Workshop, Bangkok. 29 Apr.–3 May 2002. FAO, Rome. p. 167–183.
- Venora, G., Grillo, O., and Saccone, R.. 2009. Quality assessment of durum wheat storage centres in Sicily: Evaluation of vitreous, starchy and shrunken kernels using an image analysis system. J. Cereal Sci. 49: 429–440. doi:10.1016/j.jcs.2008.12.006
- Watson, S.A. 1988. Corn marketing, processing, and utilization. In: G.F. Sprague, J.W. Dudley, editors, Corn and corn improvement. 3rd ed. Agron. Monogr. 18. ASA, CSSA, and SSSA, Madison, WI. p. 881–940. doi:10.2134/agronmonogr18.3ed.c15
10.2134/agronmonogr18.3ed.c15 Google Scholar
- Wilson, C.M. 1991. Multiple zeins from maize endosperms characterized by reversed-phase high performance liquid chromatography. Plant Physiol. 95: 777–786. doi:10.1104/pp.95.3.777
- Wu, Y.V., and Bergquist, R.R.. 1991. Relation of corn grain density to yields of dry-milling products. Cereal Chem. 68: 542–544.
- Wu, Y., Holding, D.R., and Messing, J.. 2010. Gamma-zeins are essential for endosperm modification in quality protein maize. Proc. Natl. Acad. Sci. U. S. A. 107: 12810–12815. doi:10.1073/pnas.1004721107
- Yao, D., Qi, W., Li, X., Yang, Q., Yan, S., and Ling, H. et al 2016. Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies. PLoS Genet. 12:e1006270. doi:10.1371/journal.pgen.1006270
- Yuan, R.C., Thompson, D.B., and Boyer, C.D.. 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem. 70: 81–89.
- Zhang, X., Colleoni, C., Ratushna, V., Sirghie-Colleoni, M., James, M., and Myers, A.. 2004. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol. Biol. 54: 865–879. doi:10.1007/s11103-004-0312-1