Journal list menu
Management of Irrigated Agriculture to Increase Organic Carbon Storage in Soils
Corresponding Author
James A. Entry
USDA–ARS, Northwest Irrigation and Soils Research Lab., 3793 North, 3600 East, Kimberly, ID, 83341
Corresponding author ([email protected])Search for more papers by this authorR. E. Sojka
USDA–ARS, Northwest Irrigation and Soils Research Lab., 3793 North, 3600 East, Kimberly, ID, 83341
Search for more papers by this authorGlen E. Shewmaker
Univ. of Idaho, Research and Extension Center, Twin Falls, ID, 83303-1827
Search for more papers by this authorCorresponding Author
James A. Entry
USDA–ARS, Northwest Irrigation and Soils Research Lab., 3793 North, 3600 East, Kimberly, ID, 83341
Corresponding author ([email protected])Search for more papers by this authorR. E. Sojka
USDA–ARS, Northwest Irrigation and Soils Research Lab., 3793 North, 3600 East, Kimberly, ID, 83341
Search for more papers by this authorGlen E. Shewmaker
Univ. of Idaho, Research and Extension Center, Twin Falls, ID, 83303-1827
Search for more papers by this authorAbstract
Increasing the amount of C in soils may be one method to reduce the concentration of CO2 in the atmosphere. We measured organic C stored in southern Idaho soils having long term cropping histories that supported native sagebrush vegetation (NSB), irrigated moldboard plowed crops (IMP), irrigated conservation-chisel-tilled crops (ICT), and irrigated pasture systems (IP). The CO2 emitted as a result of fertilizer production, farm operations, and CO2 lost via dissolved carbonate in irrigation water, over a 30-yr period, was included. Net organic C in ecosystems decreased in the order IP > ICT > NSB > IMP. In this study, if NSB were converted to IMP, 0.15 g C m−2 would be emitted to the atmosphere, but if converted to IP 3.56 g C m−2 could be sequestered. If IMP land were converted to ICT, 0.95 g C m−2 could be sequestered in soil and if converted to IP 3.71 g C m−2 could be sequestered. There are 2.6 × 108 ha of land worldwide presently irrigated. If irrigated agriculture were expanded 10% and the same amount of rainfed land were converted back to native grassland, an increase of 3.4 × 109 Mg C (5.9% of the total C emitted in the next 30 yr) could potentially be sequestered. The total projected release of CO2 is 5.7 × 1010 Mg C worldwide during the next 30 yr. Converting rainfed agriculture back to native vegetation while modestly increasing areas in irrigated agriculture could have a significant impact on CO2 atmospheric concentrations while maintaining or increasing food production.
References
- 1Aase, J.K. Sprinkler irrigation runoff and erosion control with polyacrylamide—laboratory tests. Soil Sci. Soc. Am. J. 1998 62 1681–1687 https://doi.org/10.2136/sssaj1998.03615995006200060028x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077836400028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Amthor, J.S., and M.A. Huston. 1998. Terrestrial ecosystem responses to global change: A research strategy. ORNL/TM-1998/27. Oak Ridge National Laboratory, Oak Ridge, TN.
- 3Bailey, R.G. 1998. Ecoregions of North America. USDA. Forest Service, U.S. Gov. Printing Office, Washington, DC.
- 4Birch, H.F. The organic matter and nitrogen status of east Africa soils. J. Soil. Sci. 1956 7 156–167 https://doi.org/10.1111/j.1365-2389.1956.tb00871.x
- 5Blake, G.R., and K.H. Hartage. 1982. Bulk density. p. 363–375. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- 6Bowman, R.A. Soil organic matter changes in intensively cropped dryland systems. Soil Sci. Soc. Am. J. 1999 63 186–191 https://doi.org/10.2136/sssaj1999.03615995006300010026x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079359600025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Bruce, J.P. Carbon sequestration in soils. J. Soil Water Conserv. 1999 59 382–389
- 8Bucks, D.A., T.W. Sammis, and G.L. Dickey. 1990. Irrigation for arid areas. p. 449–548. In G.J. Hoffman et al. (ed.) Management of farm irrigation systems. ASAE, St. Joseph, MI.
- 9Burke, J.C. Texture, climate and cultivation effects on soils organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 1989 53 800–805 https://doi.org/10.2136/sssaj1989.03615995005300030029x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AC08300029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Cambardella, C.A. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992 56 777–783 https://doi.org/10.2136/sssaj1992.03615995005600030017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JD36800018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Collett, R.A. 1982. Soil Survey of Ada County area. USDA–NRCS. U.S. Gov. Print. Office, Washington, DC.
- 12Collins, H.P. Soil carbon dynamics in corn-based agroecosystems. Soil Sci. Soc. Am. J. 1999 63 584–591 https://doi.org/10.2136/sssaj1999.03615995006300030022x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081490700022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13Dewar, R.C. Analytical model of carbon storage in the trees, soils, and wood products of managed forests. Tree Physiol. 1991 8 239–258 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FJ24700003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 14Dommar, J.F. Effect of grazing and cultivation on some chemical properties of soils in the mixed prairie. J. Range. Manage. 1990 43 456–460 https://doi.org/10.2307/3899012
- 15Entry, J.A. The efficacy of polyacryalmide and related compounds to remove microorganisms and nutrients from animal wastewater. J. Environ. Qual. 2000 29 1905–1914 https://doi.org/10.2134/jeq2000.00472425002900060025x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000165364200025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Entry, J.A. Influence of forest age on forms of carbon in Douglas-fir soils in the Oregon Coast Range.: –395. Can. J. For. Res. 1998 28 390–395 https://doi.org/10.1139/cjfr-28-3-390
- 17Follett, R.F. Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res. 2001 61 77–92 https://doi.org/10.1016/S0167-1987(01)00180-5 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169663700008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Frank, A.B. Soil carbon and nitrogen of Northern Great Plains grasslands as influenced by long term grazing. J. Range. Manage. 1995 48 470–474 https://doi.org/10.2307/4002255
- 19Harmon, M.E. Effects on carbon storage of conversion of old growth forests to young growth forests. Science 1990 247 699–702 https://doi.org/10.1126/science.247.4943.699 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990CM84300034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Henderson, G.S. 1995. Soil organic matter: A link between forest management and productivity. p. 419–436. In W.F. McFee, and J.M. Kelley (ed.) Carbon forms and functions in forest soils. SSSA, Madison, WI.
- 21Hontoria, C. Relationships between soil organic carbon and site characteristics in peninsular Spain. Soil Sci. Soc. Am. J. 1999 63 614–621 https://doi.org/10.2136/sssaj1999.03615995006300030026x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081490700026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Howell, T.A. 2000. Irrigations role in enhancing water use efficiency. p. 67–80. In R.G. Evans et al. (ed.) National Irrigation Symposium. American Society of Engineers, St. Joseph, MI.
- 23Houghton, R.A. The U.S. carbon budget: Contributions from land use change. Science 1999 285 574–578 https://doi.org/10.1126/science.285.5427.574 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081609500035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Janzen, H.H., C.A. Campbell, E.G. Gregorich, and B.H. Ellert. 1997. Soil carbon dynamics in Canadian ecosystems. p. 57–80. In R. Lal et al. (ed.) Soils and global change. CRC Press, Boca Raton, FL.
- 25Jobbagy, E.G. The vertical distribution of organic carbon and its relation to climate and vegetation.: –436. Ecol. Appl. 2000 10 423–436 https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086008300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Johnson, D.W. Effects of forest management on soil carbon storage. Water Air Soil Pollut. 1992 64 83–120 https://doi.org/10.1007/BF00477097 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JA71500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Kimble, L., and B.A. Stewart. 1995. World soils as a source or sink for radiatively active gasses. p. 1–7. In R. Lal et al. (ed.) Soils and global change. CRC Press, Boca Raton, FL.
- 28Kirk, R.E. 1982. Experimental design: Procedures for the behavioral sciences. 2nd ed. Brooks/Cole Publishing, Monterey, CA.
- 29Lal, R. Managing U.S. cropland to sequester carbon in soil. J. Soil Water Conserv. 1999 59 374–381
- 30Liski, J. CO2 emissions from soil in response to climatic warming are overestimated—The decomposition of old soil organic matter is tolerant of temperature. Ambio 1999 28 171–174 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080179600012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Nelson, D.W., and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. p. 961–1010. In J.M. Bigham (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI.
10.2136/sssabookser5.3.c34 Google Scholar
- 32Paustian, K. Agricultural soil as a C sink to offset CO2 emissions. Soil Use Manage. 1997 13 230–244 https://doi.org/10.1111/j.1475-2743.1997.tb00594.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000071751400002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Potter, K.N. Distribution and amount of soil organic C in long term management systems in Texas. Soil Tillage Res. 1998 47 309–321 https://doi.org/10.1016/S0167-1987(98)00119-6 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Rasmussen, P.E. Long-term impacts of tillage, fertilizer and crop residue on soil organic matter in temperate semi-arid regions. Adv Agron. 1991 45 93–134 https://doi.org/10.1016/S0065-2113(08)60039-5
- 35Rasmussen, P.E. Long-term effects of residue management in wheat-fallow: I. Inputs, yield, and soil organic matter.: –530. Soil Sci. Soc. Am. J. 1994 58 523–530 https://doi.org/10.2136/sssaj1994.03615995005800020039x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NG62900039&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Ross, D.J. Land-use change: Effects on soil carbon, nitrogen, and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol. Biochem. 1999 31 803–813 https://doi.org/10.1016/S0038-0717(98)00180-1 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080235700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37 SAS Institute. 1996. SAS user's guide: Statistics, Version 6.03 edition. Statistical Analysis System (SAS) Institute, Cary, NC.
- 38Schimel, D. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 2000 287 2004–2006 https://doi.org/10.1126/science.287.5460.2004 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085902800058&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 39Schlesinger, W.M. Carbon balance in terrestrial detritus. Ann. Rev. Ecol. 1977 8 51–81 https://doi.org/10.1146/annurev.es.08.110177.000411
- 40Schlesinger, W.M. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 1990 348 232–234 https://doi.org/10.1038/348232a0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EH79600056&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Schlesinger, W.M. 1995. An overview of the C cycle. p. 9–26. In R. Lal et al. (ed.) Soils and global change. CRC Press, Boca Raton, FL.
- 42Schlesinger, W.M. Carbon sequestration in soils. Science 1999 284 2095 https://doi.org/10.1126/science.284.5423.2095 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081099300024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Schuman, G.E. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Applic. 1999 9 65–71 https://doi.org/10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2
- 44Snedecor, W.G., and W.G. Cochran. 1980. Statistical methods. 7th ed. Iowa State University Press, Ames, IA.
- 45Sojka, R.E. Polyacrylamide effects on infiltration in irrigated agriculture. J. Soil Water Conserv. 1998a 54 325–331
- 46Sojka, R.E. Water and erosion management with multiple applications of polyacrylamide in furrow irrigation. Soil Sci. Soc. Am. J. 1998b 62 1672–1680 https://doi.org/10.2136/sssaj1998.03615995006200060027x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077836400027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 47Sojka, R.E. Influence of polyacrylamide application to soil on movement of microorganisms in runoff water. Environ. Pollut. 2000 108 405–412 https://doi.org/10.1016/S0269-7491(99)00194-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086048100012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 48Tribe, D. 1994. Feeding and greening the world, the role of agricultural research. CAB International. Wallingford, UK.
- 49Van Cleve, K. Control of soil development on the Tanana River floodplain, interior, Alaska. Can. J. For. Res. 1993 23 941–955 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LQ39000022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 50Wang, Y. The impact of land use change on C turnover in soils. Gobal Biogeochem. Cycles 1999 13 47–57 https://doi.org/10.1029/1998GB900005
- 51West, T.O. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2001 91 217–232 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000178112700018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4