Journal list menu
Using Soil Phosphorus Profile Data to Assess Phosphorus Leaching Potential in Manured Soils
Corresponding Author
Peter J. A. Kleinman
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Corresponding author ([email protected])Search for more papers by this authorBrian A. Needelman
Dep. Natural Resource Sciences and Landscape Architecture, Univ. Maryland, College Park, MD, 20742
Search for more papers by this authorAndrew N. Sharpley
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Search for more papers by this authorRichard W. McDowell
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Search for more papers by this authorCorresponding Author
Peter J. A. Kleinman
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Corresponding author ([email protected])Search for more papers by this authorBrian A. Needelman
Dep. Natural Resource Sciences and Landscape Architecture, Univ. Maryland, College Park, MD, 20742
Search for more papers by this authorAndrew N. Sharpley
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Search for more papers by this authorRichard W. McDowell
USDA-ARS, Pasture Systems and Watershed Management Research Unit, Curtin Road, University Park, PA, 16802-3702
Search for more papers by this authorAbstract
Transport of P by subsurface flow pathways can be an important mechanism of P transfer from land to water, particularly in manured soils that are artificially drained. This study was conducted to determine whether detailed description and interpretation of soil P profile data provide adequate insight into P leaching potential. Evidence of P translocation within soil profiles of a tile-drained Buchanan (fine-loamy, mixed, semiactive, mesic Aquic Fragiudult)-Hartleton (loamy-skeletal, mixed, active, mesic Typic Hapludults) catena was assessed by measuring oxalate-extractable P, P sorption saturation, Mehlich-3 P, water-extractable P in bulk and clay film samples obtained from individual horizons. Tile-drain monitoring and column leaching experiments were conducted to evaluate interpretations derived from soil P profile data. Soil P fractions were not correlated with P losses in lysimeter studies, indicating the limited potential of using soil profile P data for quantitative prediction of leaching losses. Application of manure to the soil surface resulted in significant increases in leachate P concentrations from the lysimeters. Soil profile P data did, however, provide some evidence of long-term P leaching. While bulk horizon samples did not indicate significant long-term P translocation to soil depths corresponding with artificial drainage, some clay film samples had significantly elevated oxalate P, P sorption saturation and Mehlich-3 P at lower depths. Elevated P concentrations in clay films may be associated with preferential transport of P along soil macropores, although, not all clay films sampled in this study were necessarily associated with active macropores. Thus, soil P profile data appear to provide limited insight into P leaching potential.
References
- 1Beegle, D.B. 1999. Soil fertility management. p. 19–46. In N. Serotkin, and S. Tibbetts (ed.) The Agronomy Guide, 1999–2000. Publications Distribution Center, Pennsylvania State University, University Park, PA.
- 2Behrendt, H. Phosphorus saturation in soils and groundwaters. Land Degrad. Rehab. 1993 4 233–243 https://doi.org/10.1002/ldr.3400040406
- 3Bremner, J.M. 1996. Nitrogen–Total. p. 1085–1121. In D.L. Sparks (ed.) Methods of soil snalysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI.
- 4Breeuwsma, A., and S. Silva. 1992. Phosphorus fertilisation and environmental effects in the Netherlands and the Po region (Italy). Rep. 57. DLO The Winand Staring Centre, Wageningen, The Netherlands.
- 5Buol, S.W. Some characteristics of clay skins on peds in the B horizon of a gray-brown podzolic soil.: –241. Soil Sci. Soc. Am. Proc. 1959 23 239–241 https://doi.org/10.2136/sssaj1959.03615995002300030025x
- 6Carpenter, S.R. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Applic. 1998 8 559–568 https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
- 7Chardon, W.J., and H.G. van Faassen. 1999. Soil indicators for critical source areas of phosphorus leaching. Rapporten Programma Geintegreerd Bodemonderzoek, vol 22. Netherlands Integrated Soil Research Program, Wageningen, The Netherlands.
- 8Cogger, C. Factors affecting phosphorus losses from cultivated organic soils. J. Environ. Qual. 1984 13 111–114 https://doi.org/10.2134/jeq1984.00472425001300010020x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984SA68900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Dils, R.M. The controversial role of tile drainage in phosphorus export from agricultural land. Water Sci. Technol. 1999 39 55–61 https://doi.org/10.1016/S0273-1223(99)00216-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000082174400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Djodjic, F. Mode of transport of surface-applied phosphorus-33 through a clay and sandy soil. J. Environ. Qual. 1999 28 1273–1282 https://doi.org/10.2134/jeq1999.00472425002800040031x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081345400029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Dodds, W.K. Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res. 1998 32 1455–1462 https://doi.org/10.1016/S0043-1354(97)00370-9 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073795400013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Eckenrode, J.J. 1985. Soil Survey of Northumberland County, Pennsylvania. USDA-SCS, U.S. Gov. Print. Office, Washington, DC.
- 13Eghball, B. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 1996 25 1339–1343 https://doi.org/10.2134/jeq1996.00472425002500060024x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VW22600037&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 14Freese, D. Comparison of different methods for phosphate sorption as a function of iron and aluminum oxides of soils. J. Soil Sci. 1992 43 729–738 https://doi.org/10.1111/j.1365-2389.1992.tb00172.x
- 15Gburek, W.J. Hydrologic controls on phosphorus loss from upland agricultural watersheds. J. Environ. Qual. 1998 27 267–277 https://doi.org/10.2134/jeq1998.272267x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000072723300005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Gburek, W.J. Phosphorus management at the watershed scale: A modification of the phosphorus index. J. Environ. Qual. 2000 29 130–144 https://doi.org/10.2134/jeq2000.00472425002900010017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000084885800018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis, Part 1. 2nd ed. Agron. Monogr. 9. SSSA and ASA, Madison, WI.
10.2136/sssabookser5.1.2ed.c15 Google Scholar
- 18Hansen, H.C.B. Empirical modelling of the kinetics of phosphate sorption to macropore materials in aggregated subsoils. Eur. J. Soil Sci. 1998 50 317–328 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080944600012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Haygarth, P.M. Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. Eur. J. Soil Sci. 1998 49 65–72 https://doi.org/10.1046/j.1365-2389.1998.00131.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000072675700006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Heckrath, G. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual. 1995 24 904–910 https://doi.org/10.2134/jeq1995.00472425002400050018x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RV38400016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Jackson, M.L., C.H. Lim, and L.W. Zelazny. 1986. Oxides, hydroxides and aluminosilicates. p. 101–150. In A. Klute (ed.) Methods of Soil Analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
10.2136/sssabookser5.1.2ed.c6 Google Scholar
- 22Jensen, M.B. Phosphate mobilization and immobilization in two soils incubated under simulated reducing conditions. Acta Agric. Scand. Ser. B 1998 48 11–17
- 23Kleinman, P.J.A. Estimating soil phosphorus sorption saturation from Mehlich-3 Data. Commun. Soil Sci. Plant Anal. 2002 32 1825–1839
- 24Kuo, S. 1996. Phosphorus. p. 869–919. In D.L. Sparks (ed.) Methods of soil analysis. Part 3. SSSA Book Ser. 5. SSSA, Madison, WI.
- 25Kuo, S. The effect of soil drainage on phosphorus status and availability to corn in long-term manure-amended soils. Soil Sci. Soc. Am. J. 1982 46 744–747 https://doi.org/10.2136/sssaj1982.03615995004600040015x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1982PH06700015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.2136/sssaj1982.03615995004600040015x Google Scholar
- 26McDowell, R.W. Approximating phosphorus release to surface runoff and subsurface drainage.: –520. J. Environ. Qual. 2001a 30 508–520 https://doi.org/10.2134/jeq2001.302508x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169455400026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27McDowell, R.W. Phosphorus losses in subsurface flow before and after manure application. Sci. Total Environ. 2001b 278 113–125 https://doi.org/10.1016/S0048-9697(00)00891-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000171560900009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984 15 1409–1416 https://doi.org/10.1080/00103628409367568 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984AER5700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Miller, M.H. Contribution of nitrogen and phosphorus to subsurface drainage water from intensively cropped mineral and organic soils in Ontario. J. Environ. Qual. 1979 8 42–48 https://doi.org/10.2134/jeq1979.00472425000800010011x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979GG66600011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Mozaffari, M. Phosphorus availability and sorption in an Atlantic coastal plain watershed dominated by animal-based agriculture. Soil Sci. 1994 157 97–107 https://doi.org/10.1097/00010694-199402000-00005 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MX34800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Murphy, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962 27 31–36 https://doi.org/10.1016/S0003-2670(00)88444-5
- 32Neter, J.W., M.H. Kutner, C.J. Nachtsheim, and W. Wasserman. 1996. Applied linear statistical models. 4th ed. Times Mirror Higher Education Group, Chicago, IL.
- 33Pote, D.H. Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff. J. Environ. Qual. 1999 28 170–175 https://doi.org/10.2134/jeq1999.281170x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000078184900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Reuter, R.J. Solute transport in seasonal perched water tables in loess-derived soilscapes. Soil Sci. Soc. Am. J. 1998 62 977–983 https://doi.org/10.2136/sssaj1998.03615995006200040019x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000075455900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Ross, G.J., and C. Wang. 1993. Extractable Al, Fe, Mn and Si. p. 239–246. In M.R. Carter (ed.) Soil sampling and methods of analysis. Lewis Press, Boca Raton, FL.
- 36Sharpley, A.N. Managing agricultural phosphorus for protection of surface waters: Issues and options. J. Environ. Qual. 1994 23 437–451 https://doi.org/10.2134/jeq1994.00472425002300030006x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NM67000005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Sharpley, A.N., and A.D. Halvorson. 1994. The management of soil phosphorus availability and its impact on surface water quality. p. 7–90. In R. Lal, and B.A. Stewart (ed.) Soil processes and water quality. CRC Press, Boca Raton, FL.
- 38Sharpley, A.N., and S. Rekolainen. 1997. Phosphorus in agriculture and its environmental implications. p. 1–54. In H. Tunney et al. (ed.) Phosphorus loss from soil to water. CAB International Press, Cambridge, England.
- 39Sharpley, A.N. Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils. Soil Sci. Soc. Am. J. 1993 57 1131–1137 https://doi.org/10.2136/sssaj1993.03615995005700040041x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LW04400041&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Simard, R.R. Potential for preferential pathways of phosphorus transport. J. Environ. Qual. 2000 29 97–105 https://doi.org/10.2134/jeq2000.00472425002900010012x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000084885800013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Sims, J.T. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998 27 277–293 https://doi.org/10.2134/jeq1998.00472425002700020006x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000072723300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42 Soil Survey Staff. 1993. Soil survey manual. USDA Handb. No. 18. USDA, Washington, DC.
- 43 Soil Survey Staff. 1999. Soil Taxonomy: A basic method for making and interpreting soil surveys. 2nd ed. USDA, NRCS Agric. Handb. 436. U.S. Gov. Print. Office, Washington, DC.
- 44Snedecor, G.W., and W.G. Cochran. 1991. Statistical Methods, 8th ed. Iowa State University Press, Ames, IA.
- 45Thomas, D., G. Heckrath, and P.C. Brookes. 1997. Evidence of phosphorus movement from Broadbalk soils by preferential flow. p. 369–370. In H. Tunney et al. (ed.) Phosphorus Loss from Soil to Water. CAB International, Wallingford.
- 46 USEPA. 1994. Water quality standards handbook. 2nd ed. EPA 823-B-94–005a. USEPA, Office of Water. U.S. Gov. Printing Office, Washington, DC.
- 47 USEPA. 1996. Environmental indicators of water quality in the United States. EPA 841-R-96–002. USEPA, Office of Water (4503F). U.S. Gov. Printing Office, Washington, DC.
- 48 U.S. Geological Survey. 1999. The quality of our nation's waters: Nutrients and pesticides. U.S. Geological Survey Circular 1225. USGS Information Services, Denver, CO.