Journal list menu
Ground-Based Forest Harvesting Effects on Soil Physical Properties and Douglas-Fir Growth
Corresponding Author
Adrian Ares
Weyerhaeuser Co., 2730 Pacific Blvd., Albany, OR, 97322
Corresponding author ([email protected])Search for more papers by this authorThomas A. Terry
Weyerhaeuser Co., 505 N. Pearl, Centralia, WA, 98531
Search for more papers by this authorRichard E. Miller
USDA Forest Service, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, 3625 93rd Avenue SW, Olympia, WA, 98512
Search for more papers by this authorHarry W. Anderson
USDA Forest Service, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, 3625 93rd Avenue SW, Olympia, WA, 98512
Search for more papers by this authorBarry L. Flaming
ENSR International, 9521 Willows Rd. NE, Redmond, WA, 98052
Search for more papers by this authorCorresponding Author
Adrian Ares
Weyerhaeuser Co., 2730 Pacific Blvd., Albany, OR, 97322
Corresponding author ([email protected])Search for more papers by this authorThomas A. Terry
Weyerhaeuser Co., 505 N. Pearl, Centralia, WA, 98531
Search for more papers by this authorRichard E. Miller
USDA Forest Service, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, 3625 93rd Avenue SW, Olympia, WA, 98512
Search for more papers by this authorHarry W. Anderson
USDA Forest Service, Pacific Northwest Research Station, Olympia Forestry Sciences Laboratory, 3625 93rd Avenue SW, Olympia, WA, 98512
Search for more papers by this authorBarry L. Flaming
ENSR International, 9521 Willows Rd. NE, Redmond, WA, 98052
Search for more papers by this authorAbstract
Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly productive site receiving vegetation control in coastal Washington. We also tested the effectiveness of tillage in maintaining or enhancing site productivity. On average, about half of the area of ground-based harvested plots was affected by vehicular traffic. Sixty-three percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at the 0- to 30-cm depth increased from 0.63 to 0.82 Mg m−3 in the most compacted portions of traffic lanes. The area-weighted increase in soil bulk density in the 0- to 30-cm depth was 27%. Soil strength in traffic lanes increased at all depths < 55 cm but never exceeded 1300 kPa. Tillage to the 60-cm depth returned the soil to its initial strength condition. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 10 to 13% with compaction, while available water holding capacity increased. In compacted soil, macropore space was reduced 40 to 52%. The study revealed no detrimental effects on tree height and diameter from soil compaction at age 4. At stand age 3, a tree volume index was actually greater for trees planted on traffic lanes than for those on non-disturbed soil.
References
- 1Bhadoria, P.B.S.Transport of anions towards root as influenced by soil compaction. Plant Soil1986 208 919
- 2Blake, G.R., and K.H. Hartge. 1986. Bulk density. p. 363–375. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed.. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
10.2136/sssabookser5.1.2ed.c13 Google Scholar
- 3Brais, S.Persistence of soil compaction and effects on seedling growth in northwestern Quebec. Soil Sci. Soc. Am. J.2001 65 12631271https://doi.org/10.2136/sssaj2001.6541263xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172918400030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 4Bullock, P.Porosity aspects of the regeneration of soil structure after compaction. Soil Til. Res.1985 5 325341https://doi.org/10.1016/S0167-1987(85)80001-5
- 5Conlin, T.S.S. Short-term effects of soil compaction on growth of Pinus contorta seedlings. Can. J. For. Res.1996 26 727739https://doi.org/10.1139/x26-082
- 6Cullen, S.J.Timber harvest trafficking and soil compaction in western Montana. Soil Sci. Soc. Am. J.1991 55 14161421https://doi.org/10.2136/sssaj1991.03615995005500050036xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991GL87600036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Da Silva, A.P.Characterization of the least limiting water range of soils. Soil Sci. Soc. Am. J.1994 58 17751781https://doi.org/10.2136/sssaj1994.03615995005800060028xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PT17400028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Danielson, R.E. and P.L. Sutherland. 1986. Porosity. p. 443–461. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed.. Agron. Monogr. No. 9. ASA and SSSA, Madison, WI.
- 9Dick, R.P.Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Sci. Soc. Am. J.1988 52 512516https://doi.org/10.2136/sssaj1988.03615995005200020038xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988N190100038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Dyck, W.J., and D.W. Cole. 1994. Strategies for determining consequences of harvesting and associated practices on long-term productivity. p. 13–40. In W.J. Dyck et al. (ed.). Impacts of forest harvesting on long-term site productivity. Chapman & Hall, London.
- 11Flint, L.E., and A.L. Flint. 2002. Porosity. p. 241–254. In J.H. Dane and G.C. Topp (ed.). Methods of Soil Analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI.
- 12Forristall, F.F.Soil properties related to forest cover-type and productivity in the Lee Forest, Snohomish County, Washington. Soil Sci. Soc. Am. Proc.1955 19 384389https://doi.org/10.2136/sssaj1955.03615995001900030034x
10.2136/sssaj1955.03615995001900030034x Google Scholar
- 13Franklin, J.F., and C.T. Dyrness. 1973. Natural vegetation of Oregon and Washington. USDA For. Serv. Gen. Tech. Rep. PNW-8. U.S. Forest Service, Portland, OR.
- 14Froehlich, H.A. Growth of young Pinus ponderosa and Pinus contorta on compacted soil in Central Washington. For. Ecol. Manage.1986 15 285294https://doi.org/10.1016/0378-1127(86)90165-9http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986E622100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Gomez, A.N uptake and N status in ponderosa pine as affected by soil compaction and forest floor removal. Plant Soil2002a 242 263275https://doi.org/10.1023/A:1016218316381http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176806400010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Gomez, A.Soil compaction effects on growth of young ponderosa pine following litter removal in California's Sierra Nevada. Soil Sci. Soc. Am. J.2002b 66 13341343https://doi.org/10.2136/sssaj2002.1334http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176588300029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Grable, A.R.Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials and elongation of corn roots. Soil Sci. Soc. Am. Proc.1968 32 180186https://doi.org/10.2136/sssaj1968.03615995003200020011x
- 18Greacen, E.L.Compaction of forest soils: A review. Aust. J. Soil Res.1980 18 163189https://doi.org/10.1071/SR9800163http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980JV16700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Hatchell, G.E.Soil disturbances in logging: Effects on soil characteristics and growth of loblolly pine in the Atlantic Coastal Plain. J. For.1970 68 772775http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1970I301800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Heilman, P.Root penetration of Douglas-fir seedlings into compacted soils. For. Sci.1981 27 660666http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981MY52400004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Heninger, R.Soil disturbance and 10-year growth response of coast Douglas-fir on non-tilled and tilled skid trails in the Oregon Cascades. Can. J. For. Res.2002 32 233246https://doi.org/10.1139/x01-195
10.1139/x01-195 Google Scholar
- 22Heninger, R.L.Managing for site productivity: Weyerhaeuser's Forestry Perspective. Biomass and Bioenergy1997 13 255267https://doi.org/10.1016/S0961-9534(97)10013-7http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000072672200008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 23Herbauts, J.Influence of logging traffic on the hydromorphic degradation of acid forest soils developed on lessic loam in middle Belgium. For. Ecol. Manage.1996 87 193207https://doi.org/10.1016/S0378-1127(96)03826-1http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996WA37900016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Hodnett, M.G.Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer function developed for tropical soils. Geoderma2002 108 155180https://doi.org/10.1016/S0016-7061(02)00105-2http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000177024600001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25Huang, J.Impact of forest harvesting on the hydraulic properties of surface soil–86. Soil Sci.1996 161 7986https://doi.org/10.1097/00010694-199602000-00001http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TX91900001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Kimble, J.M., C.L. Ping, M.E. Sumner, and L.P. Wilding. 2000. Classification of Soils: Andisols. p. 209–223. In M.E. Sumner (ed.) Handbook of soil science, CRC Press, New York.
- 27King, J. 1966. Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser Forestry Paper No. 8. Weyerhaeuser Co., Forestry Research Center, Centralia, WA.
- 28Kranabetter, J.M., and P. Sanborn. 2003. Short-term effects of forest soil compaction and site organic matter removal on mineralizable soil nitrogen in Central British Columbia. University of British Columbia LTSPS Research Note. Smithers, BC, Canada.
- 29Lenhard, R.J.Changes in void distribution and volume during compaction of a forest soil. Soil Sci. Soc. Am. J.1986 50 462464https://doi.org/10.2136/sssaj1986.03615995005000020042xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986C037200042&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Littell, R.C., G.A. Milliken, W.W. Strout, and R.D. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute Inc., Cary, NC.
- 31Logan, R.L. 1987. Geologic map of the Chehalis River and Westport Quadrangles, Washington. Washington Division of Geology and Earth Resources. Open File Report 87–8.
- 32Lopushinsky, W.Effect of soil temperature on root and shoot growth and on budburst timing in conifer seedling transplants. New Forest1990 4 107124https://doi.org/10.1007/BF00119004
10.1007/BF00119004 Google Scholar
- 33Malmer, A.Soil disturbance and loss of infiltrability caused by mechanized and manual extraction of tropical rainforest in Sabah, Malaysia. For. Ecol. Manage.1990 38 112https://doi.org/10.1016/0378-1127(90)90081-Lhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990ER60700001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34McNabb, D.H.Evaluation of the relationship between compressibility and shear strength of Andisols. Soil Sci. Soc. Am. J.1993 57 923929https://doi.org/10.2136/sssaj1993.03615995005700040007xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LW04400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Miller, R.E., J. Hazard, and S. Howes. 2001. Precision, accuracy, and efficiency of four tools for measuring soil bulk density or strength. Res. Pap. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.
- 36Miller, R.E.Soil compaction and conifer growth after tractor yarding at three coastal Washington locations. Can. J. For. Res.1996 26 225236https://doi.org/10.1139/x26-026
- 37Miller, R.E., W.I. Stein, R.L. Heninger, W. Scott, S.N. Little, and D.J. Goheen. 1989. Maintaining and improving site productivity in the Douglas-fir region. p. 98–136. In D.A. Perry et al. (ed.) Maintaining the long-term productivity of Pacific Northwest Ecosystems. Timber Press, Portland, OR.
- 38Minore, D., C.E. Smith, and R.F. Woollard. 1969. Effects of high soil density on seedling root growth of seven northwestern tree species. USDA For. Serv. Res. Note PNW-112.
- 39Murphy, G.E.Pinus radiata survival, growth and form 4 years after planting off and on skidtrails. N.Z. J. For.1983 28 184193
- 40Page-Dumroese, D.S.Impacts of soil compaction and tree stump removal on soil properties and outplanted seedlings in northern Idaho, USA. Can. J. Soil Sci.1998 78 2934http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073319700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Powers, R.F. 1989. Maintaining long-term forest productivity in the Pacific Northwest: Defining the issues. p. 3–16. In D.A. Perry et al. (ed.). Maintaining the long-term productivity of Pacific Northwest forest ecosystems. Timber Press, Portland, OR.
- 42Powers, R.F. and G.O. Fiddler. 1997. The North American long-term soil productivity study: Progress through the first five years. p. 88–102. Proceedings 18th Annual Forest Vegetation Management Conference. Redding, CA.
- 43Powers, R.F., A.E. Tiarks, and J.R. Boyle. 1998. Assessing soil quality: practicable standards for sustainable forest productivity in the United States. p. 53–80. In M.B. Adams et al. (ed.). The contribution of soil science to the development of and implementation of criteria and indicators of sustainable forest management. SSSA Spec. Pub. No. 53. SSSA, Madison, WI.
- 44Purser, M.D.Changes in soil physical properties due to cable yarding and their hydrologic implications. West. J. Appl. For.1992 7 3639
- 45Sands, R.Compaction of sandy soils in radiata pine forests. I. A penetrometer study. Aust. J. Soil. Res.1979 17 101113https://doi.org/10.1071/SR9790101
- 46 SAS Institute. 1999. SAS user's guide: Statistics. Version 8. SAS Institute, Cary, NC.
- 47Senyk, J.P., and D. Craigdallie. 1997. Ground-based wet weather yarding operations in Coastal British Columbia: Effects of soil properties and seedling growth. Information Report BC-X-372, Pacific Forestry Center, Victoria, B.C.
- 48Singer, M.J. 1981. Soil compaction-seedling growth study. Tech. Rep. Cooperative Agreement USDA-7USC-2202, Suppl. 43. USDA Forest Service, Pacific Southwest Region, San Francisco, CA.
- 49Smeltzer, D.L.K.Forest ecosystem responses to artificially induced soil compaction. II. Selected soil microorganism populations. Can. J. For. Res.1986 16 870872https://doi.org/10.1139/x86-154
- 50Smith, C.W.Does soil compaction on harvesting extraction roads affect long-term productivity of Eucalyptus plantations in Zululand, South Africa?S. Afr. For. J.2003 199 4153
- 51 Soil Science Society of America. 1997. Glossary of soil science terms: Soil Science Society of America. SSSA, Madison, WI.
- 52 Soil Survey Laboratory. 1995. SSL information manual. USDA Natural Resources Conservation Services. SS Investigative Report no. 45, Version 1.0. Lincoln, NB.
- 53 Soil Survey Staff. 1992. Keys to soil taxonomy. 5th ed. SMSS Tech. Monogr. No. 19. Pocahontas Press, Inc., Blacksburg, VA.
- 54Spittlehouse, D.L. and S.W. Childs. 1990. Evaluating the seedling moisture environment after site preparation. p. 80–94. Proc. 7th North American Forest Soils Conference.
- 55Startsev, A.D.Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. For. Res.2000 80 617624
- 56Steinbrenner, E.C., and F.E. Gehrke. 1973. Soil survey of the McDonald Tree Farm. Weyerhaeuser Company, Tacoma, WA.
- 57Steinbrenner, E.C.The effect of tractor logging on physical properties of some forest soils in southwestern Washington. Soil Sci. Soc. Am. Proc.1955 19 372376https://doi.org/10.2136/sssaj1955.03615995001900030030x
10.2136/sssaj1955.03615995001900030030x Google Scholar
- 58Torbet, H.A.Effects of soil compaction and water-filled pore space on soil microbial activity and N losses. Commun. Soil. Sci. Plant Anal.1992 23 13211331https://doi.org/10.1080/00103629209368668http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JA52400013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 59Van Genuchten, M.T.A closed-form equation for predicting the hydraulic conductance of unsaturated soils. Soil Sci. Soc. Am. J.1980 44 892898https://doi.org/10.2136/sssaj1980.03615995004400050002xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980KS00500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 60Wert, S.Effects of skid roads on diameter, height, and volume growth in Douglas-fir. Soil Sci. Soc. Am. J.1981 45 629632https://doi.org/10.2136/sssaj1981.03615995004500030038xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981LW18500038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 61Wingate-Hill, R. and B.F. Jakobsen.Increased mechanization and soil damage in forests–a review. N. Z. J. For. Sci.1982 12 380393
- 62Zabowski, D.Timber harvesting residue treatment: Part 1. Response of conifer seedlings, soils and microclimate. For. Ecol. Manage.2000 126 2534https://doi.org/10.1016/S0378-1127(99)00081-Xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000084651900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 63Zabowski, D.Timber harvesting and long-term productivity: Weathering processes and soil disturbance. For. Ecol. Manage.1994 66 5568https://doi.org/10.1016/0378-1127(94)90148-1http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PB57700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 64Zavitkovski, J. and W.K. Ferrell Effect of drought upon rates of photosynthesis, respiration, and transpiration of seedlings of two ecotypes of Douglas-fir (Pseudotsuga menziesii). Bot. Gaz.1968 129 346350https://doi.org/10.1086/336455