Journal list menu
Assessing the Reliability of Permanganate-Oxidizable Carbon as an Index of Soil Labile Carbon
A. Tirol-Padre
Crop, Soil, and Water Sciences Div., IRRI, DAPO, Box 7777, Metro Manila, Philippines
Search for more papers by this authorCorresponding Author
J. K. Ladha
Crop, Soil, and Water Sciences Div., IRRI, DAPO, Box 7777, Metro Manila, Philippines
Corresponding author ([email protected]). Search for more papers by this authorA. Tirol-Padre
Crop, Soil, and Water Sciences Div., IRRI, DAPO, Box 7777, Metro Manila, Philippines
Search for more papers by this authorCorresponding Author
J. K. Ladha
Crop, Soil, and Water Sciences Div., IRRI, DAPO, Box 7777, Metro Manila, Philippines
Corresponding author ([email protected]). Search for more papers by this authorAbstract
Soil C oxidized by neutral KMnO4, or permanganate-oxidizable C (POC), has been used as an index of labile C by several workers, although the nature of organic C (OC) oxidized has not been well elucidated. This study aimed to determine the reactivity of diverse organic compounds found in the soil with KMnO4 to judge the reliability of POC as an index of labile C. Sugars, amino acids, and other organic acids reacted slowly with 33 mM KMnO4 (2–45% C oxidized in 1 h), while compounds containing glycol groups (e.g., ascorbic acid and pyrogallol) were oxidized quickly by KMnO4 (25% C oxidized in 1 min). Permanganate did not oxidize cellulose, which is decomposed by soil microbial enzymes. The POC of organic manures and plant residues was positively correlated with lignin content. The rates of oxidation of SOM with KMnO4 varied among different rice (Oryza sativa L.) soils and were highly correlated with total soil C. The clay + silt/OC ratio negatively affected POC rendering physical protection for oxidizable C groups. In the soil, KMnO4 more rapidly oxidized less readily available organic compounds than the water-soluble carbohydrates, indicating that it did not discriminate the nonlabile from labile C. Soil POC was better correlated with total C (P < 0.01) than with water-soluble C (WSC) (P < 0.05) and was not correlated with microbial biomass C (MBC). Carbon oxidized by KMnO4 is not a reliable measure of labile C and should be referred to as POC when used as a parameter for characterizing soil C.
References
- 1Almendros, G.Room temperature alkaline permanganate oxidation of representative humic acids. Soil Biol. Biochem.1989 21 481486https://doi.org/10.1016/0038-0717(89)90118-1http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AF72700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Almendros, G.An evaluation of some oxidative degradation methods of humic substances applied to carbohydrate-derived humic-like polymers. J. Soil Sci.1990 41 5159https://doi.org/10.1111/j.1365-2389.1990.tb00044.x
- 3Bhandari, A.L.Yield and soil nutrient trends in a long-term rice-wheat rotation in India. Soil Sci. Soc. Am. J.2002 66 162170https://doi.org/10.2136/sssaj2002.0162http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173219300019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 4Barker, B. and N. L. OwenIdentifying softwoods and hardwoods by infrared spectroscopy. J. Chem. ed.1999 76 17061709https://doi.org/10.1021/ed076p1706
- 5Becker, M.Parameters affecting residue nitrogen mineralization in flooded soils. Soil Sci. Soc. Am. J.1994 58 16661671https://doi.org/10.2136/sssaj1994.03615995005800060013xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PT17400013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Blair, G.J.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res.1995 46 14591466https://doi.org/10.1071/AR9951459http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995TJ37900009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Blair, G.J., R.D.B. Lefroy, B.P. Singh, and A.R. Till. 1997. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate. p. 273–281. In G. Cadisch and K.E. Giller (ed.) Driven by nature: Plant litter quality and decomposition. CAB International, Wallingford, UK.
- 8Blair, G.J., R.D.B. Lefroy, A. Whitbread, N. Blair, and A. Conteh. 2001. The development of the KMnO4 oxidation technique to determine labile carbon in soil and its use in a carbon management index. p. 323–337. In R. Lal et al. (ed.) Assessment methods for soil carbon. Lewis Publishers, CRC Press, Boca Raton, FL.
- 9Bohn, H., B. McNeal, and G. O'Connor. 1985. Soil organic matter. p. 135–152. In Soil chemistry. 2nd ed. John Wiley & Sons, New York.
- 10Cheng, H.H., and J.M. Kimble. 2001. Characterization of soil organic carbon pools. p. 117–129. In R. Lal et al. (ed.) Assessment methods for soil carbon. Lewis Publishers, CRC Press, Boca Raton, FL.
- 11Christensen, B.T.Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J. Soil Sci.1986 37 125135https://doi.org/10.1111/j.1365-2389.1986.tb00013.x
- 12Conteh, A.Labile organic carbon determined by permanganate oxidation and its relationships to other measurements of soil carbon. Humic Subst. Environ.1999 1 315
- 13 Cornell Waste Management Institute. 2000. Substrate composition table, Cornell Composting Website. Available at http://compost.css.cornell.edu/calc/lignin.noframes.html (verified 3 Feb. 2004).
- 14Deng, S.P.Effect of tillage and residue management on enzyme activities in soils. I. Amidohydrolases. Biol. Fertil. Soils1996a 22 202207https://doi.org/10.1007/s003740050099http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UP64300003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Deng, S.P.Effect of tillage and residue management on enzyme activities in soils. II. Glycosidases. Biol. Fertil. Soils1996b 22 208213https://doi.org/10.1007/BF00382514http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UP64300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Deng, S.P.Effect of tillage and residue management on enzyme activities in soils. III. Phosphatases and arylsulfatase. Biol. Fertil. Soils1997 24 141146https://doi.org/10.1007/s003740050222http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WL91300002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Franzluebbers, A.J.Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biol. Biochem.1994 26 14691475https://doi.org/10.1016/0038-0717(94)90086-8http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PP62800002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Gomez, K.A., and A.A. Gomez. 1984. Statistical procedures for agricultural research. 2nd ed. John Wiley & Sons, NY.
- 19Green, J.W. 1980. Oxidative reactions and degradations. p. 1101–1156. In W. Pigman and D. Horton (ed.) The Carbohydrates: Chemistry and biochemistry. Academic Press, New York.
- 20Gregorich, E.G., and H.H. Janzen. 1996. Storage of soil carbon in the light fraction and macroorganic matter. p. 167–190. In M.R. Carter and D.A. Stewart (ed.) Structure and organic matter storage in agricultural soils. Lewis Publishers, CRC Press, Boca Raton, FL.
- 21Hussain, I.Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci. Soc. Am. J.1999 63 13351341https://doi.org/10.2136/sssaj1999.6351335xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083839800036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Jimenez, R.J.Automated elemental analysis: A rapid and reliable but expensive measurement of total C and N in plant and soil samples. Commun. Soil Sci. Plant Anal.1993 24 18971924https://doi.org/10.1080/00103629309368926http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LV73700011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 23Ladha, J.K.Long-term effects of urea and green manure on rice yields and nitrogen balance. Soil Sci. Soc. Am. J.2000 64 19932001https://doi.org/10.2136/sssaj2000.6461993xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000166023900013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Loginow, W.Fractionation of organic C based on susceptibility to oxidation. Pol. J. Soil Sci.1987 20 4752
- 25Matsuda, K.The permanganate oxidation of humic acids extracted from acid soils. Soil Sci.1972 114 185193https://doi.org/10.1097/00010694-197209000-00005http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1972N705800004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Maximov, O.B.Alkaline permanganate oxidation of methylated humic acids. Fuel1972 51 185189https://doi.org/10.1016/0016-2361(72)90077-4http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1972M753700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.1016/0016-2361(72)90077-4 Google Scholar
- 27Maximov, O. B.On permanganate oxidation of humic acids. Geoderma1977 19 6378https://doi.org/10.1016/0016-7061(77)90014-3http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1977DX24300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Murage, E.W.Diagnostic indicators of soil quality in productive and non-productive smallholders' fields of Kenya's Central Highlands. Agric. Ecosyst. Environ.2000 79 18https://doi.org/10.1016/S0167-8809(99)00142-5http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087283800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Parton, W.J.Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry1988 5 109131https://doi.org/10.1007/BF02180320http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988L992500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30 SAS Institute. 1995. SAS system for Windows. Release 6.11. SAS Institute, Inc. Cary, NC.
- 31Scholes, R.J., and M. C Scholes. 1995. The effect of land use on nonliving organic matter in the soil. p. 210–225. In R.G. Zepp and C. Sonntag (ed.) The role of nonliving organic matter in the earth's C cycle. John Wiley & Sons, Chichester, UK.
- 32Shrestha, R.K.Carbon management for sustainability of an intensively managed rice-based cropping system. Biol. Fertil. Soils2002 36 215223https://doi.org/10.1007/s00374-002-0523-zhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000178821200006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Sparling, G. P.Ratio of microbial biomass C to soil organic C as a sensitive indicator of changes in soil organic matter. :–207Aust. J. Soil Res.1992 30 195https://doi.org/10.1071/SR9920195http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HJ91000009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Theng, B.K.G., K.R. Tate, and P. Sollins. 1989. Constituents of organic matter in temperate and tropical soils. p. 5–31. In D.C. Coleman et al. (ed.) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Honolulu, HI.
- 35Van Soest, P.J. 1968. Use of detergents in the analysis of fibrous feeds: A rapid method for the determination of fibers and lignin. p. 829–835. In Association of official analytical chemists. 14th ed. AOAC, Arlington, VA.
- 36Van Soest, P.J.Determination of lignin and cellulose in acid detergent fiber with permanganate. J. Assoc. Off. Anal. Chem.1968 51 780785
- 37Whitbread, A.M.A survey of the impact of cropping on soil physical and chemical properties in North-western New South Wales. Aust. J. Soil Res.1998 36 669681https://doi.org/10.1071/S97031http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074612800009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Willard, H.H., N.H. Furman, and C.E. Bricker. 1956. Oxidations with standard potassium permanganate solutions. p. 217. In Elements of quantitative analysis, theory and practice. D. Van Nostrand Co., Princeton, NJ.
- 39Witt, C.Soil microbial biomass and N supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol. Fertil. Soils1998 28 7180https://doi.org/10.1007/s003740050465http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077299100011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Woomer, P.L., A. Martin, A. Albrecht, D.V.S. Resck, and H.W. Scharpenseel. 1994. The importance and management of soil organic matter in the tropics. p. 47–80. In P.L. Woomer and M.J. Swift (ed.) The biological management of tropical soil fertility. John Wiley & Sons, New York.
- 41Yoshikawa, S.Characteristics of microbial biomass and soil organic matter in newly reclaimed wetland rice soils. Biol. Fertil. Soils1995 19 292296https://doi.org/10.1007/BF00336097http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QM33500004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4