Journal list menu
Examining Changes in Soil Organic Carbon with Oat and Rye Cover Crops Using Terrain Covariates
Corresponding Author
T. C. Kaspar
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Corresponding author ([email protected])Search for more papers by this authorT. B. Parkin
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorD. B. Jaynes
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorC. A. Cambardella
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorY. S. Jung
Div. of Biological Environment, Kangwon National Univ., Chunchun, Korea
USDA-ARS and Kangwon National Univ
Search for more papers by this authorCorresponding Author
T. C. Kaspar
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Corresponding author ([email protected])Search for more papers by this authorT. B. Parkin
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorD. B. Jaynes
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorC. A. Cambardella
USDA-ARS, National Soil Tilth Lab., Ames, IA, 50011
Search for more papers by this authorY. S. Jung
Div. of Biological Environment, Kangwon National Univ., Chunchun, Korea
USDA-ARS and Kangwon National Univ
Search for more papers by this authorAbstract
Winter cover crops have the potential to increase soil organic C in the corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] rotation in the upper Midwest. Management effects on soil C, however, are often difficult to measure because of the spatial variation of soil C across the landscape. The objective of this study was to determine the effect of oat (Avena sativa L.), rye (Secale cereale L.), and a mixture of oat and rye used as winter cover crops following soybean on soil C levels over 3 yr and both phases of a corn–soybean rotation using terrain attributes as covariates to account for the spatial variability in soil C. A field experiment was initiated in 1996 with cover crop treatments, both phases of a corn–soybean rotation, and a controlled-traffic no-till system. Oat, rye, and oat–rye mixture cover crop treatments were overseeded into the soybean phase of the rotation in late August each year. Cover crop treatments were not planted into or after the corn phase of the rotation. Soil C concentration was measured on 450 samples taken across both rotation phases in a 7.62-m grid pattern in the late spring of 2000, 2001, and 2002. Slope, relative elevation, and wetness index (WI) were used as covariates in the analysis of variance to remove 77% of the variation of soil C caused by landscape driven patterns of soil C. Soil C concentrations were 0.0023 g C g soil−1 higher in 2001 and 0.0016 g C g soil−1 higher in 2002 than in 2000. The main effects of cover crops were not significant, but the interaction of cover crops and rotation phase was significant. The rye cover crop treatment had 0.0010 g C g soil−1 higher soil C concentration than the no-cover-crop control in the soybean phase of the rotation, which included cover crops, but had 0.0016 g C g soil−1 lower C concentrations than the control in the corn phase of the rotation, which did not have cover crops. Using terrain covariates allowed us to remove most of the spatial variability of soil C, but oat and rye cover crops planted every other year after soybean did not increase soil C concentrations averaged over years and rotation phases.
References
- 1Andrews, W.F., and R.O. Diderikson. 1981. Soil survey of Boone County, Iowa. USDA-SCS U.S. Gov. Printing Office, Washington, DC.
- 2 Arc/Info. 1998. Arc/Info GIS software documentation, Arc/Info Version 7.2.1. Environmental Systems Research Institute, Redlands, CA.
- 3Baker, J.L., Colvin, T.S., Marley, S.J., and Dawebeit, M. A point-injector applicator to improve fertilizer management. Appl. Eng. Agric. 1989 5 334–338
- 4Beale, O.W., Nutt, G.B., and Peele, T.C. The effects of mulch tillage on runoff, erosion, soil properties, and crop yields. Soil Sci. Soc. Proc. 1955 19 244–247. https://doi.org/10.2136/sssaj1955.03615995001900020035x
- 5Buyanovsky, G.A., and Wagner, G.H. Post-harvest residue input to cropland. Plant Soil 1986 93 57–65. https://doi.org/10.1007/BF02377145, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986A922300005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Cambardella, C.A., A.M. Gajda, J.W. Doran, B.J. Wienhol, and T.A. Kettler. 2001. Evaluation of particulate and total organic matter by weight loss-on-ignition. p. 349–359. In R. Lal et al. (ed.) Assessment methods for soil carbon. CRC Press, Boca Raton, FL.
- 7Campbell, C.A., Janzen, H.H., Paustian, K., Gregorich, E.G., Sherrod, L., Liang, B.C., and Zentner, R.P. Storage in soils of the North American Great Plains: Effect of cropping frequency. Agron. J. 2005 97 349–363. https://doi.org/10.2134/agronj2005.0349, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000228037700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Campbell, C.A., Zenter, R.P., Selles, F., Biederbeck, V.O., McConkey, B.G., Blomert, B., and Jefferson, P.G. Quantifying short-term effects of crop rotations on soil organic carbon in southwestern Saskatchewan. Can. J. Soil Sci. 2000 80 193–202. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086376600022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Colvin, T.S. Automated weighing and moisture sampling for a field-plot combine. Appl. Eng. Agric. 1990 6 713–714
- 10Eckert, D.J. Chemical attributes of soils subjected to no-till cropping with rye cover crops. Soil Sci. Soc. Am. J. 1991 55 405–409. https://doi.org/10.2136/sssaj1991.03615995005500020019x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FZ63200019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Ellert, B.H., H.H. Janzen, and B.G. McConkey. 2001. Measuring and comparing soil carbon storage. p. 131–146. In R. Lal et al. (ed.) Assessment methods for soil carbon. CRC Press, Boca Raton, FL.
- 12Freund, R.J., and R.C. Littell. 2000. SAS systems for regression. Statistical Analysis System Institute Inc., Cary, NC.
- 13Gomez, K.A., and A.A. Gomez. 1984. Statistical procedures for agricultural research. 2nd ed. John Wiley & Sons, New York.
- 14Gotway, C.A. Fitting semivariogram models by weighted least squares. Comput. Geosci. 1991 17 171–172. https://doi.org/10.1016/0098-3004(91)90085-R, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991EU98300009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Herzmann, D. 2004. Climodat reports. [Online] Iowa Environmental Mesonet, Iowa State University, Department of Agronomy, Ames, IA. Available online at http://mesonet.agron.iastate.edu/climodat/ (verified 10 Mar. 2006).
- 16Huggins, D.R., Buyanovsky, G.A., Wagner, G.H., Brown, J.R., Darmody, R.G., Peck, T.R., Lesoing, G.W., Vanotti, M.B., and Bundy, L.G. Soil organic C in the tallgrass prairie-derived region of the corn belt: Effects of long-term crop management. Soil Tillage Res. 1998 47 219–234. https://doi.org/10.1016/S0167-1987(98)00108-1, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Huggins, D.R., and D.J. Fuchs. 1997. Long-term N management effects on corn yield and soil C of an Aquic Haplustoll in Minnesota. p. 121–128. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL.
- 18Janzen, H.H., B.H. Ellert, and D.W. Anderson. 2002. Organic matter in the landscape. In R. Lal (ed.) Encyclopedia of soil science. Marcel Dekker Inc., New York.
- 19Jarecki, M.K., and Lal, R. Crop management for soil carbon sequestration. Crit. Rev. Plant Sci. 2003 22 471–502. https://doi.org/10.1080/713608318, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000187549600001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Johnson, T.J., Kaspar, T.C., Kohler, K.A., Corak, S.J., and Logsdon, S.D. Oat and rye overseeded into soybean as fall cover crops in the upper Midwest. J. Soil Water Conserv. 1998 53 276–279. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000075961100018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Karlen, D.L., and C.A. Cambardella. 1996. Conservation strategies for improving soil quality and organic matter storage. p. 395–420. In M.R. Carter, and B.A. Stewart (ed.) Structure and organic matter storage in agricultural soils. Advances in Soil Science. CRC Press Inc. New York.
- 22Kaspar, T.C., Pulido, D.J., Fenton, T.E., Colvin, T.S., Karlen, D.L., Jaynes, D.B., and Meek, D.W. Relationship of corn and soybean yield to soil and terrain properties. Agron. J. 2004 96 700–709. https://doi.org/10.2134/agronj2004.0700, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221754000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 23Kemmis, T.J., G.R. Hallberg, and A.J. Lutenegger. 1981. Depositional environments of glacial sediments and landforms on the Des Moines Lobe. Iowa Geol. Surv. Guidebook 6. Iowa Geol. Surv., Iowa City, IA.
- 24Kuo, S., Sainju, U.M., and Jellum, E.J. Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Sci. Soc. Am. J. 1997 61 145–152. https://doi.org/10.2136/sssaj1997.03615995006100010022x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WH68000022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole. 1998. The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI.
- 26Li, Y., and Lindstrom, M.J. Evaluating soil quality–soil redistribution relationship on terraces and steep hillslope. Soil Sci. Soc. Am. J. 2001 65 1500–1508. https://doi.org/10.2136/sssaj2001.6551500x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172918500021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Linn, D.M., and Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984 48 1267–1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984TY27000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolfinger. 1996. SAS system for mixed models. SAS Institute, Cary, NC.
- 29Meek, D.W. 2002. Another look at Clark's adit silver series. p. 356–368. In G. Milliken (ed.) Proceedings of the Conference of Applied Statistics in Agriculture 2001, Manhattan, KS, 29 Apr.–1 May 2001, Statistics Dep., Kansas State University, Manhattan, KS.
- 30Mendes, I.C., Bandick, A.K., Dick, R.P., and Bottomley, P.J. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J. 1999 63 873–881. https://doi.org/10.2136/sssaj1999.634873x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000082832300021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Moore, I.D., Gessler, P.E., Nielsen, G.A., and Peterson, G.A. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993 57 443–452. https://doi.org/10.2136/sssaj1993.03615995005700020026x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LC31400026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Moorman, T.B., Cambardella, C.A., James, D.E., Karlen, D.L., and Kramer, L.A. Quantification of tillage and landscape effects on soil carbon in small Iowa watersheds. Soil Tillage Res. 2004 78 225–236. https://doi.org/10.1016/j.still.2004.02.014, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000222843400010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Mueller, T.G., and Pierce, F.J. Soil carbon maps: Enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci. Soc. Am. J. 2003 67 258–267. https://doi.org/10.2136/sssaj2003.0258, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181886100030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34 National Agricultural Statistics Service. 2006. Crops county data [Online]. Available at http://www.nass.usda.gov (Verified 10 Mar. 2006.)
- 35Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539–579. In A.L. Page et al (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- 36Nyakatawa, E.Z., Reddy, K.C., and Sistani, K.R. Tillage, cover cropping, and poultry litter effects on selected soil chemical properties. Soil Tillage Res. 2001 58 69–79. https://doi.org/10.1016/S0167-1987(00)00183-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000167355100007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Parkin, T.B., and Kaspar, T.C. Temporal variability of soil CO2 flux: Effect of sampling frequency on cumulative carbon loss estimates. Soil Sci. Soc. Am. J. 2003 68 1234–1241. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000222612400014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Patrick, W.H., Haddon, C.B., and Hendrix, J.A. The effect of longtime use of winter cover crops on certain physical properties of Commerce loam. 1957. Soil Sci. Soc. Am. Proc. 1957 21 366–368. https://doi.org/10.2136/sssaj1957.03615995002100040004x
- 39Paustian, K., H.P. Collins, and E.A. Paul. 1997. Management controls on soil carbon. p. 15–49. In E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL.
- 40Power, J.F., and V.O. Biederbeck. 1991. Role of cover crops in integrated crop production systems. p. 167–174. In W.L. Hargrove (ed.) Cover crops for clean water. Proceedings of International Conference, Jackson, TN. 9–11 Apr. 1991. Soil and Water Conservation Society of America, Ankeny, IA.
- 41Ritchie, J.C., G.W. McCarty, E.R. Venteris, T.C. Kaspar, L.B. Owens, and M. Nearing. 2004. Assessing soil organic carbon redistribution with fallout 137Cesium. In Conserving soil and water for society: Sharing solutions. Proceedings of the ISCO 2004–13th International Soil Conservation Organization Conference, Brisbane, Australia, 4–8 July 2004. Paper No. 613, 4 pages. (CD-ROM)
- 42Ruffo, M.L., and Bollero, G.A. Modeling hairy vetch residue decomposition as a function of degree-days and decomposition-days. Agron. J. 2003 95 900–907. https://doi.org/10.2134/agronj2003.0900, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184502900011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Sainju, U.M., Singh, B.P., and Whitehead, W.F. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Tillage Res. 2002 63 167–179. https://doi.org/10.1016/S0167-1987(01)00244-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172724500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44 SAS Institute. 1999. SAS OnlineDoc, version 8. [Online] SAS Institute, Cary, NC. Available at http://v8doc.sas.com/sashtml/ (verified 10 Mar. 2006).
- 45Schimel, D., Stillwell, M.A., and Woodmansee, R.G. Biogeochemistry of C, N, and P in a soil catena of the shortgrass steppe. Ecology 1985 66 276–282. https://doi.org/10.2307/1941328, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1985ABS6200028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 46Schulte, E.E., and B.G. Hopkins. 1996. Estimation of soil organic matter by weight loss-on-ignition. p. 21–31. In F.R. Magdoff et al (ed.) Soil organic matter: Analysis and interpretation. SSSA Spec. Publ. 46. SSSA, Madison, WI.
- 47Schulte, E.E., Kaufmann, C., and Peter, J.B. The influence of sample size and heating time on soil weight loss-on-ignition. Commun. Soil Sci. Plant Anal. 1991 22 159–168. https://doi.org/10.1080/00103629109368402, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FQ70700013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 48Skopp, J., Jawson, M.D., and Doran, J.W. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 1990 54 1619–1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EX69100018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 49Steel, R.G.D., and J.H. Torrie. 1960. Principles and procedures of statistics, with special reference to the biological sciences. 1st ed. McGraw-Hill, New York.
- 50Strock, J.S., Porter, P.M., and Russelle, M.P. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. Corn Belt. J. Environ. Qual. 2004 33 1010–1016. https://doi.org/10.2134/jeq2004.1010, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221509200026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 51Tarboton, D.G. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997 33 309–319. https://doi.org/10.1029/96WR03137, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WF23900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 52Tarboton, D.G. 2002. Terrain analysis using digital elevation models (TAUDEM). [Software and documentation online]. Available at http://hydrology.neng.usu.edu/taudem/ (verified 10 Mar. 2006). D.G. Tarboton, Logan, UT.
- 53Unger, P.W. Overwinter changes in physical properties of no-tillage soil. Soil Sci. Soc. Am. J. 1991 55 778–782. https://doi.org/10.2136/sssaj1991.03615995005500030024x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FZ63400024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 54Utomo, M., W.W. Frye, and R.L. Blevins. 1987. Effect of legume cover crops and tillage on soil water, temperature, and organic matter. p. 5–6. In J.F. Power (ed.) The role of legumes in conservation tillage systems. Proc. of a National Conf., 27–29 Apr. 1987, Athens, GA. Soil Conservation Society of America, Ankeny, IA.
- 55Utomo, M., Frye, W.W., and Blevins, R.L. Sustaining soil nitrogen for corn using hairy vetch cover crop. Agron. J. 1990 82 979–983. https://doi.org/10.2134/agronj1990.00021962008200050028x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EC39000028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 56Vigil, M.F., and Kissel, D.E. Rate of nitrogen mineralized from incorporated crop residue as influenced by temperature. Soil Sci. Soc. Am. J. 1995 59 1636–1644. https://doi.org/10.2136/sssaj1995.03615995005900060019x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995TF74000019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 57Wagger, M.G., Cabrera, M.L., and Ranells, N.N. Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv. 1998 53 214–218. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000075961100006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 58Wilson, J.P., and J.C. Gallant. 2000. Digital terrain analysis. p. 1–27. In J.P. Wilson, and J.C. Gallant (ed.) Terrain analysis: Principles and applications. John Wiley & Sons, New York.