Journal list menu
Early Response of Soil Organic Fractions to Tillage and Integrated Crop–Livestock Production
Corresponding Author
Alan J. Franzluebbers
USDA-ARS, Natural Resource Conserv. Center, 1420 Experiment Station Rd., Watkinsville, GA, 30677
Corresponding author ([email protected]).Search for more papers by this authorJohn A. Stuedemann
USDA-ARS, Natural Resource Conserv. Center, 1420 Experiment Station Rd., Watkinsville, GA, 30677
Search for more papers by this authorCorresponding Author
Alan J. Franzluebbers
USDA-ARS, Natural Resource Conserv. Center, 1420 Experiment Station Rd., Watkinsville, GA, 30677
Corresponding author ([email protected]).Search for more papers by this authorJohn A. Stuedemann
USDA-ARS, Natural Resource Conserv. Center, 1420 Experiment Station Rd., Watkinsville, GA, 30677
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
Tillage, cropping system, and cover cropping are important management variables that control the quantity, quality, and placement of organic matter inputs to soil. How soil organic matter and its different fractions respond to management has not been comprehensively studied in integrated crop–livestock systems. We conducted a 3-yr field experiment on a Typic Kanhapludult in Georgia in which long-term pasture was terminated and converted to annual crops. Tillage systems were conventional (CT, moldboard plowed initially and disked thereafter) and no-till (NT). Cropping systems were summer grain with winter cover crop and winter grain with summer cover crop. Cover crops were either grazed by cattle or left unharvested. Total organic C was highly stratified with depth under NT and relatively uniformly distributed with depth under CT. All soil C and N fractions were greater under NT than under CT at a depth of 0 to 6 cm. Tillage system had the most dominant influence on all soil C and N fractions, and cropping system the least. At the end of 3 yr, total organic C at a depth of 0 to 30 cm was lower under CT than under NT (42.6 vs. 47.4 Mg ha−1 [P < 0.001]). Potential C mineralization was also lower under CT than under NT (1240 vs. 1371 kg ha−1 during 24 d [P = 0.02]). At a depth of 0 to 30 cm, cover crop management had no effect on soil C and N fractions, but within the surface 6 cm some changes occurred with grazing of cover crops by cattle, the most dramatic of which were 1 ± 9% increase in soil microbial biomass C and 3 ± 16% decrease in potential C mineralization. To preserve high surface-soil C and N fractions and total plow-layer contents, NT cropping following termination of perennial pasture is recommended. In addition, since cattle grazing cover crops did not consistently negatively influence soil C and N fractions, integrated crop–livestock systems are recommended as a viable conservation approach while intensifying agricultural land use.
References
- 1Baker, J.M., Ochsner, T.E., Venterea, R.T., and Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007 118 1–5. https://doi.org/10.1016/j.agee.2006.05.014, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243609800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Beare, M.H., Hendrix, P.F., and Coleman, D.C. Water-stable aggregates and organic matter fractions in conventional- and no-tillage soils. Soil Sci. Soc. Am. J. 1994 58 777–786. https://doi.org/10.2136/sssaj1994.03615995005800030020x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NX64700020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Belesky, D.P., Stuedemann, J.A., Plattner, R.D., and Wilkinson, S.R. Ergopeptine alkaloids in grazed tall fescue. Agron. J. 1988 80 209–212. https://doi.org/10.2134/agronj1988.00021962008000020014x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988M927300012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 4Bending, G.D., and Lincoln, S.D. Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol. Biochem. 2000 32 1261–1269. https://doi.org/10.1016/S0038-0717(00)00043-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088575100023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Bundy, L.G., and Meisinger, J.J. Nitrogen availability indices. p. 951–984. R.W. Weaver et al. (ed.) Methods of soil analysis. Part 2. SSSA Book Ser. 5. SSSA, Madison, WI. 1994
- 6Cambardella, C.A., and Elliott, E.T. Particulate organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992 56 777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JD36800018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Cambardella, C.A., and Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993 57 1071–1076. https://doi.org/10.2136/sssaj1993.03615995005700040032x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LW04400032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Carpenter-Boggs, L., Kennedy, A.C., and Reganold, J.P. Organic and biodynamic management: Effects on soil biology. Soil Sci. Soc. Am. J. 2000 64 1651–1659. https://doi.org/10.2136/sssaj2000.6451651x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089688600015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Carter, M.R. Researching structural complexity in agricultural soils. Soil Tillage Res. 2004 79 1–6. https://doi.org/10.1016/j.still.2004.04.001, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000223509200001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Dick, W.A., Blevins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J., and Vitosh, M.L. Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil Tillage Res. 1998 47 235–244. https://doi.org/10.1016/S0167-1987(98)00112-3, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Doran, J.W. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 1980 44 765–771. https://doi.org/10.2136/sssaj1980.03615995004400040022x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980KG52400022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Doran, J.W. Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol. Fertil. Soils 1987 5 68–75. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K575000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13 R.F. Follett, J.W.B. Stewart, and C.V. Cole (ed.) Soil fertility and organic matter as critical components of production systems. SSSA Spec. Publ. 19. SSSA, Madison, WI. 1987
10.2136/sssaspecpub19 Google Scholar
- 14Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002a 66 95–106. https://doi.org/10.1016/S0167-1987(02)00018-1, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176641700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002b 66 197–205. https://doi.org/10.1016/S0167-1987(02)00027-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176641700011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Franzluebbers, A.J. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Tillage Res. 2005 83 120–147. https://doi.org/10.1016/j.still.2005.02.012, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000230329400007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Franzluebbers, A.J., and Arshad, M.A. Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Can. J. Soil Sci. 1996 76 387–393. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VG59100016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Franzluebbers, A.J., and Brock, B.G. Surface soil responses to silage cropping intensity on a Typic Kanhapludult in the Piedmont of North Carolina. Soil Tillage Res. 2007 93 126–137. https://doi.org/10.1016/j.still.2006.03.021, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000244163800013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Franzluebbers, A.J., Haney, R.L., Honeycutt, C.W., Schomberg, H.H., and Hons, F.M. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 2000a 64 613–623. https://doi.org/10.2136/sssaj2000.642613x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089446200024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Franzluebbers, A.J., Hons, F.M., and Zuberer, D.A. Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Sci. Soc. Am. J. 1994 58 1639–1645. https://doi.org/10.2136/sssaj1994.03615995005800060009x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PT17400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Franzluebbers, A.J., Nazih, N., Stuedemann, J.A., Fuhrmann, J.J., Schomberg, H.H., and Hartel, P.G. Soil carbon and nitrogen pools under low- and high-endophyte-infected tall fescue. Soil Sci. Soc. Am. J. 1999 63 1687–1694. https://doi.org/10.2136/sssaj1999.6361687x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085517800027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Franzluebbers, A.J., and Stuedemann, J.A. Particulate and non-particulate fractions of soil organic carbon under pastures in the southern Piedmont USA:–S62. Environ. Pollut. 2002 116 S53 https://doi.org/10.1016/S0269-7491(01)00247-0, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173291500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 23Franzluebbers, A.J., and Stuedemann, J.A. Crop and cattle responses to tillage systems for integrated crop–livestock production in the southern Piedmont USA. Renewable Agric. Food Syst. 2007 22 168–180. https://doi.org/10.1017/S1742170507001706
- 24Franzluebbers, A.J., Stuedemann, J.A., and Schomberg, H.H. Spatial distribution of soil carbon and nitrogen pools under grazed tall fescue. Soil Sci. Soc. Am. J. 2000b 64 635–639. https://doi.org/10.2136/sssaj2000.642635x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089446200026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25Franzluebbers, A.J., Stuedemann, J.A., Schomberg, H.H., and Wilkinson, S.R. Soil organic C and N pools under long-term pasture management in the southern Piedmont USA. Soil Biol. Biochem. 2000c 32 469–478. https://doi.org/10.1016/S0038-0717(99)00176-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086255300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Franzluebbers, A.J., Stuedemann, J.A., and Wilkinson, S.R. Bermudagrass management in the southern Piedmont USA: I. Soil and surface residue carbon and sulfur. Soil Sci. Soc. Am. J. 2001 65 834–841. https://doi.org/10.2136/sssaj2001.653834x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169464500027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Fraser, D.G., Doran, J.W., Sahs, W.W., and Lesoing, G.W. Soil microbial populations and activities under conventional and organic management. J. Environ. Qual. 1988 17 585–590. https://doi.org/10.2134/jeq1988.00472425001700040011x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988Q685800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Garcia-Prechac, F., Ernst, O., Siri-Prieto, G., and Terra, J.A. Integrating no-till into crop–pasture rotations in Uruguay. Soil Tillage Res. 2004 77 1–13. https://doi.org/10.1016/j.still.2003.12.002, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221287700001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Gee, G.W., and Bauder, J.W. Particle-size analysis. p. 383–411. A. Klute (ed.) Methods of soil analysis. Part 1. Physical and mineralogical methods. SSSA Book Ser. 5. SSSA, Madison, WI. 1986
10.2136/sssabookser5.1.2ed.c15 Google Scholar
- 30Grandy, A.S., and Robertson, G.P. Aggregation and organic matter protection following tillage of a previously uncultivated soil. Soil Sci. Soc. Am. J. 2006 70 1398–1406. https://doi.org/10.2136/sssaj2005.0313, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000238735700035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Hargrove, W.L., Reid, J.T., Touchton, J.T., and Gallaher, R.N. Influence of tillage practices on the fertility status of an acid soil double-cropped to wheat and soybeans. Agron. J. 1982 74 684–687. https://doi.org/10.2134/agronj1982.00021962007400040021x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1982PB80500020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Jastrow, J.D., Miller, R.M., and Lussenhop, J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 1998 30 905–916. https://doi.org/10.1016/S0038-0717(97)00207-1, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074233500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Kraus, T.E.C., Zasoski, R.J., Dahlgren, R.A., Horwath, W.R., and Preston, C.M. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol. Biochem. 2004 36 309–321. https://doi.org/10.1016/j.soilbio.2003.10.006, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000189081500012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Langdale, G.W., West, L.T., Bruce, R.R., Miller, W.P., and Thomas, A.W. Restoration of eroded soil with conservation tillage. Soil Technol. 1992 5 81–90. https://doi.org/10.1016/0933-3630(92)90009-P
- 35Mao, J., Yang, L., Shi, Y., Hu, J., Piao, Z., Mei, L., and Yin, S. Crude extract of Astragalus mongholicus root inhibits crop seed germination and soil nitrifying activity. Soil Biol. Biochem. 2006 38 201–208. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000234917500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36McCarty, G.W., Lyssenko, N.N., and Starr, J.L. Short-term changes in soil carbon and nitrogen pools during tillage management transition. Soil Sci. Soc. Am. J. 1998 62 1564–1571. https://doi.org/10.2136/sssaj1998.03615995006200060013x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077836400013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Mendes, I.C., Bandick, A.K., Dick, R.P., and Bottomley, P.J. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J. 1999 63 873–881. https://doi.org/10.2136/sssaj1999.634873x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000082832300021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Mousel, E.M., Schacht, W.H., Zanner, C.W., and Moser, L.E. Effects of summer grazing strategies on organic reserves and root characteristics of big bluestem. Crop Sci. 2005 45 2008–2014. https://doi.org/10.2135/cropsci2004.0694, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000231764400046&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 39 National Agricultural Statistics Service. 2002 Census of agriculture. Vol. 1: County level data. Available at (verified 2 Jan. 2008). USDA-NASS, Washington, DC. 2004
- 40Odu, C.T.I., and Akerele, R.B. Effects of soil, grass and legume root extracts on heterotrophic bacteria, nitrogen mineralization and nitrification in soil. Soil Biol. Biochem. 1973 5 861–867. https://doi.org/10.1016/0038-0717(73)90032-1
10.1016/0038-0717(73)90032-1 Google Scholar
- 41Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 1987 51 1173–1179. https://doi.org/10.2136/sssaj1987.03615995005100050015x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K564900015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Plante, A.F., and McGill, W.B. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Tillage Res. 2002 66 79–92. https://doi.org/10.1016/S0167-1987(02)00015-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176223600008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Potter, K.N., Torbert, H.A., Jones, O.R., Matocha, J.E., Morrison, J.E. Jr., and Unger, P.W. Distribution and amount of soil organic C in long-term management systems in Texas. Soil Tillage Res. 1998 47 309–321. https://doi.org/10.1016/S0167-1987(98)00119-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44Powlson, D.S., Brookes, P.C., and Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987 19 159–164. https://doi.org/10.1016/0038-0717(87)90076-9, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987H165100007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 45Rice, E.L., and Pancholy, S.K. Inhibition of nitrification by climax ecosystems: II. Additional evidence and possible role of tannins. Am. J. Bot. 1973 60 691–702. https://doi.org/10.2307/2441448, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1973Q633200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 46Rice, E.L., and Pancholy, S.K. Inhibition of nitrification by climax ecosystems: III. Inhibitors other than tannins. Am. J. Bot. 1974 61 1095–1103. https://doi.org/10.2307/2441927, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1974U803900007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 47Sainju, U.M., Singh, B.P., and Yaffa, S. Soil organic matter and tomato yield following tillage, cover cropping, and nitrogen fertilization. Agron. J. 2000 94 594–602. https://doi.org/10.2134/agronj2002.0594, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000175630700026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 48Singurindy, O., Richards, B.K., Molodovskaya, M., and Steenhuis, T.S. Nitrous oxide and ammonia emissions from urine-treated soils: Texture effect. Vadose Zone J. 2006 5 1236–1245. https://doi.org/10.2136/vzj2006.0073, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243724900018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 49Studdert, G.A., Echeverria, H.E., and Casanovas, E.M. Crop–pasture rotation for sustaining the quality and productivity of a Typic Argiudoll. Soil Sci. Soc. Am. J. 1997 61 1466–1472. https://doi.org/10.2136/sssaj1997.03615995006100050026x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YB54800026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 50Tollner, E.W., Calvert, G.V., and Langdale, G. Animal trampling effects on soil physical properties of two southeastern U.S. Ultisols. Agric. Ecosyst. Environ. 1990 33 75–87. https://doi.org/10.1016/0167-8809(90)90145-4
- 51Tonitto, C., David, M.B., and Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006 112 58–72. https://doi.org/10.1016/j.agee.2005.07.003, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000234606600006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 52Trimble, S.W. Man-induced soil erosion on the southern Piedmont, 1700–1970. Soil Conserv. Soc. Am., Ames, IA. 1974
- 53Voroney, R.P., and Paul, E.A. Determination of kC and kN in situ for calibration of the chloroform fumigation–incubation method. Soil Biol. Biochem. 1984 16 9–14. https://doi.org/10.1016/0038-0717(84)90117-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984SN45100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 54Wander, M.M., Bidart, M.G., and Aref, S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 1998 62 1704–1711. https://doi.org/10.2136/sssaj1998.03615995006200060031x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077836400031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 55Weil, R.R., and Magdoff, F. Significance of soil organic matter to soil quality and health. p. 1–43. F. Magdoff, and R.R. Weil (ed.) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, FL. 2004