Journal list menu
Sensitivity of Labile Soil Organic Carbon to Tillage in Wheat-Based Cropping Systems
Corresponding Author
Fugen Dou
Dep. of Plant Science, Univ. of California, Davis, CA, 99775
Corresponding author ([email protected]).Search for more papers by this authorAlan L. Wright
Everglades Research and Education Center, Univ. of Florida, Belle Glade, FL, 33430
Search for more papers by this authorFrank M. Hons
Dep. of Soil and Crop Sciences, Texas A&M Univ., 2474 TAMU, College Station, TX, 77843-2474
Search for more papers by this authorCorresponding Author
Fugen Dou
Dep. of Plant Science, Univ. of California, Davis, CA, 99775
Corresponding author ([email protected]).Search for more papers by this authorAlan L. Wright
Everglades Research and Education Center, Univ. of Florida, Belle Glade, FL, 33430
Search for more papers by this authorFrank M. Hons
Dep. of Soil and Crop Sciences, Texas A&M Univ., 2474 TAMU, College Station, TX, 77843-2474
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
To investigate the sensitivity of labile, or active, soil organic C (SOC), such as soil microbial biomass C (SMBC), mineralizable C, particulate organic matter C (POM C), dissolved organic C (DOC), and hydrolyzable C, to changes in management, we sampled soils in a 20-yr experiment with tillage (no-till [NT] and conventional tillage [CT]), cropping sequence, and N fertilization treatments in south-central Texas. Sensitivity is defined as how rapidly soil properties respond to changes in management. No-till significantly increased the size of SOC and all labile SOC pools compared with CT, especially at 0 to 5 cm. Intensified cropping also increased SOC and these labile pools, which generally decreased with depth. Labile pools were highly correlated with each other and SOC, but their slopes were significantly different, being lowest for DOC and highest for hydrolyzable C. In our study, SMBC was 5 to 8%, mineralized C was 2%, POM C was 14 to 31%, hydrolyzable C was 53 to 71%, and DOC was 1 to 2% of SOC. Model II orthogonal regression and simple linear regression both provided similar results, indicating that both methods were appropriate for evaluation of sensitivity to changes in management; however, using our proposed equation for sensitivity to tillage, no labile SOC pool was more sensitive than SOC. Further studies are needed to examine the effectiveness of this model.
References
- 1Anderson, J.P.E. Soil respiration. p. 837–871. A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1982
- 2Balota, E.L., Filho, A.C., Andrade, D.S., and Dick, R.P. Long-term tillage and crop rotation effects on microbial biomass C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 2004 77 137–145 https://doi.org/10.1016/j.still.2003.12.003 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221350100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Blake, G.R., and Hartge, K.H. Bulk density. p. 363–375. A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1986
- 4Brookes, P.C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 1995 19 269–279 https://doi.org/10.1007/BF00336094 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QM33500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Cambardella, C.A., and Elliott, E.T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992 56 777–783 https://doi.org/10.2136/sssaj1992.03615995005600030017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JD36800018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Cambardella, C.A., and Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993 57 1071–1076 https://doi.org/10.2136/sssaj1993.03615995005700040032x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LW04400032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Campbell, C.A., Biederbeck, V.O., Zentner, R.P., and Lafond, G.P. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black Chernozem. Can. J. Soil Sci. 1991 71 363–376 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991GH73100008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Carter, M.R., and Rennie, D.A. Changes in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potentials. Can. J. Soil Sci. 1982 62 587–597 https://doi.org/10.4141/cjss82-066 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1982PY40900005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Chan, K.Y. Consequences of changes in particulate organic carbon in Vertisols under pasture and cropping. Soil Sci. Soc. Am. J. 1997 61 1376–1382 https://doi.org/10.2136/sssaj1997.03615995006100050013x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YB54800013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Collins, H.P., Elliott, E.T., Paustian, K., Bundy, L.G., Dick, W.A., Huggins, D.R., Smucker, A.J.M., and Paul, E.A. Soil carbon pools and fluxes in long-term Corn Belt agroecosystems. Soil Biol. Biochem. 2000 32 157–168 https://doi.org/10.1016/S0038-0717(99)00136-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085418700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Doran, J.W., Elliott, E.T., and Paustian, K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil Tillage Res. 1998 49 3–18 https://doi.org/10.1016/S0167-1987(98)00150-0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077153200002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Dou, F., and Hons, F. Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems. Soil Sci. Soc. Am. J. 2006 70 1896–1905 https://doi.org/10.2136/sssaj2005.0229 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000242038300009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13Franzluebbers, A.J., Haney, R.L., and Hons, F.M. Relationships of chloroform fumigation–incubation to soil organic matter pools. Soil Biol. Biochem. 1999 31 395–405 https://doi.org/10.1016/S0038-0717(98)00142-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079310500009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 14Franzluebbers, A.J., Haney, R.L., Hons, F.M., and Zuberer, D.A. Determination of microbial biomass and nitrogen mineralization following rewetting of dried soil. Soil Sci. Soc. Am. J. 1996 60 1133–1139 https://doi.org/10.2136/sssaj1996.03615995006000040025x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UW89000025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Franzluebbers, A.J., Hons, F.M., and Saladino, V.A. Sorghum, wheat, and soybean production as affected by long-term tillage, crop sequence and N fertilization. Plant Soil 1995a 173 55–65 https://doi.org/10.1007/BF00155518 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RM93800007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Franzluebbers, A.J., Hons, F.M., and Zuberer, D.A. Long-term changes in soil carbon and nitrogen pools in wheat management systems. Soil Sci. Soc. Am. J. 1994 58 1639–1645 https://doi.org/10.2136/sssaj1994.03615995005800060009x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PT17400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Franzluebbers, A.J., Hons, F.M., and Zuberer, D.A. Soil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum. Soil Sci. Soc. Am. J. 1995b 59 460–466 https://doi.org/10.2136/sssaj1995.03615995005900020027x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QV26600027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Franzluebbers, A.J., and Stuedemann, J.A. Bermudagrass management in the southern Piedmont USA: III. Particulate and biologically active soil carbon. Soil Sci. Soc. Am. J. 2003 67 132–138 https://doi.org/10.2136/sssaj2003.0132 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181886100016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Gallaher, R.N., Weldon, J.W., and Boswell, F.C. A semiautomated procedure for total nitrogen in plant and soil samples. Soil Sci. Soc. Am. J. 1976 40 887–889 https://doi.org/10.2136/sssaj1976.03615995004000060026x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1976CU29900018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Granatstein, D.M., Bezdicek, D.F., Cochran, V.L., Elliott, L.F., and Hammel, J. Long-term tillage and rotation effects on soil microbial biomass, carbon, and nitrogen. Biol. Fertil. Soils 1987 5 315–332
- 21Gregorich, E.G., Carter, M.R., Angers, D.A., Monreal, C.M., and Ellert, B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994 74 367–385 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PZ37100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005 85 221–268 https://doi.org/10.1016/S0065-2113(04)85005-3
- 23Holland, E.A., and Coleman, D.C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 1987 68 425–433 https://doi.org/10.2307/1939274 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987G467000021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Horwath, W.R., and Paul, E.A. Microbial biomass. p. 753–773. R.W. Weaver et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI. 1994
- 25Insam, H., and Domsch, K.H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb. Ecol. 1988 15 177–188 https://doi.org/10.1007/BF02011711 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988M091400006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Jenkinson, D.S., and Ladd, J.N. Microbial biomass in soil: Measurement and turnover. p. 415–471. E.A. Paul, and J.N. Ladd (ed.) Soil biochemistry. Vol. 5. Marcel Dekker, New York. 1981
- 27Jenkinson, D.S., and Powlson, D.S. The effects of biocidal treatments on metabolism in soil: V. A method for measuring soil biomass. Soil Biol. Biochem. 1976 8 209–213 https://doi.org/10.1016/0038-0717(76)90005-5 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1976BT15800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Ladd, J.N., Amato, M., Zhou, L.-K., and Schultz, J.E. Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in an Australian Alfisol. Soil Biol. Biochem. 1994 26 821–831 https://doi.org/10.1016/0038-0717(94)90298-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NR48600003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29McLauchlan, K.K., and Hobbie, S.E. Comparison of labile soil organic matter fractionation techniques. Soil Sci. Soc. Am. J. 2004 68 1616–1625 https://doi.org/10.2136/sssaj2004.1616 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000223817500017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Nelson, D.W., and Sommers, L.E. Total carbon, organic carbon, and organic matter. p. 539–594. A.L. Page et al. (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1982
- 31Olk, D.C., and Gregorich, E.G. Overview of the symposium proceedings, “Meaningful pools in determining soil carbon and nitrogen dynamics.” Soil Sci. Soc. Am. J. 2006 70 967–974
- 32Orchard, V.A., and Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983 15 447–453 https://doi.org/10.1016/0038-0717(83)90010-X http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983RK84900010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Paul, E.A., and Clark, F.E. Soil microbiology and biochemistry. Academic Press, New York. 1989
- 34Paul, E.A., Morris, S.J., and Bohm, S. The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers. p. 193–206. R. Lal et al. (ed.) Assessment methods for soil carbon. Lewis Publ., Boca Raton, FL. 2001
- 35Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones, O.R., Lyon, D.G., and Tanaka, D.L. Reduced tillage and increasing cropping intensity in the Great Plains conserve soil carbon. Soil Tillage Res. 1998 47 207–218 https://doi.org/10.1016/S0167-1987(98)00107-X http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Poller, A.M., Van den Besselaar, H.P., Jespersen, J., Tripodi, A., and Houghton, D. A comparison of linear and orthogonal regression analysis for local INR determination in ECAA coagulometer studies. Br. J. Haematol. 1998 102 910–917 https://doi.org/10.1046/j.1365-2141.1998.00866.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000075793300006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Powlson, D.S., Brookes, P.C., and Christensen, B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987 19 159–164 https://doi.org/10.1016/0038-0717(87)90076-9 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987H165100007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Rovira, P., and Vallejo, V.R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 2002 107 109–141 https://doi.org/10.1016/S0016-7061(01)00143-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000175304500006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 39Saffigna, P.G., Powlson, D.S., Brookes, P.C., and Thomas, G.A. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian Vertisol. Soil Biol. Biochem. 1989 21 759–765 https://doi.org/10.1016/0038-0717(89)90167-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AZ60300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40 SAS Institute. SAS/STAT users guide. Version 8. SAS Inst., Cary, NC. 1999
- 41Six, J., Elliot, E.T., and Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000 32 2099–2103 https://doi.org/10.1016/S0038-0717(00)00179-6 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000165987000012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Sokal, R., and Rohlf, J. Biometry: The principles and practice of statistics in biological research. W.H. Freeman, New York. 1994
- 43Spedding, T.A., Hamel, C., Mehuys, G.R., and Madramootoo, C.A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol. Biochem. 2004 36 499–512 https://doi.org/10.1016/j.soilbio.2003.10.026 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000220010000012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44Stevenson, F.J. Humus chemistry: Genesis, composition, reactions. John Wiley & Sons, New York. 1994
- 45Stevenson, I.L. Some observations on the microbial activity in remoistened air-dried soils. Plant Soil 1956 8 170–182 https://doi.org/10.1007/BF01398818
- 46 Technicon Industrial Systems. Determination of nitrogen in BS acid digests. Technicon Ind. Method 334–74W/B. Technicon Ind. Syst., Tarrytown, NY. 1977a
- 47 Technicon Industrial Systems. Nitrate and nitrite in soil extracts. Technicon Ind. Method 487–77A. Technicon Ind. Syst., Tarrytown, NY. 1977b
- 48Thompson, J.P. Soil biotic and biochemical factors in a long-term tillage and stubble management experiment on a Vertisol: 2. Nitrogen deficiency with zero tillage and stubble retention. Soil Tillage Res. 1992 22 339–361 https://doi.org/10.1016/0167-1987(92)90048-G http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HC32800012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 49Van Gestel, M., Ladd, J.N., and Amato, M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: Influence of sequential fumigation, drying and storage. Soil Biol. Biochem. 1991 23 313–322 https://doi.org/10.1016/0038-0717(91)90185-M http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FG73600001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 50Van Veen, J.A., Ladd, J.N., and Amato, M. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)]glucose and [15N](NH4) 2SO4 under different moisture regimes. Soil Biol. Biochem. 1985 17 747–756 https://doi.org/10.1016/0038-0717(85)90128-2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1985AVX9700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 51Voroney, R.P., and Paul, E.A. Determination of kC and kN in situ for calibration of the chloroform fumigation–incubation method. Soil Biol. Biochem. 1984 19 9–14
- 52West, T.O., and Post, W. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002 66 1930–1946 https://doi.org/10.2136/sssaj2002.1930 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184794400025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 53Wright, A.L., Provin, T.L., Hons, F.M., Zuberer, D.A., and White, R.H. Dissolved organic C in soil from compost-amended bermudagrass turf. HortScience 2005 40 830–835 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000229399200069&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 54Zhang, J.B., Song, C.C., and Yang, W.Y. Land use effects on the distribution of labile organic carbon fractions through soil profiles. Soil Sci. Soc. Am. J. 2006 70 660–667 https://doi.org/10.2136/sssaj2005.0007 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000236009100038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4