Journal list menu
Response of Potentially Mineralizable Soil Nitrogen and Indices of Nitrogen Availability to Tillage System
Mehdi Sharifi
Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, NB, Canada, E3B 4Z7
Search for more papers by this authorCorresponding Author
Bernie J. Zebarth
Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, NB, Canada, E3B 4Z7
Corresponding author ([email protected]).Search for more papers by this authorDavid L. Burton
Dep. of Environmental Science, Nova Scotia Agricultural College, PO Box 550, 21 Cox Rd., Truro, NS, Canada, B2N 5E3
Search for more papers by this authorCynthia A. Grant
Agriculture and Agri-Food Canada, Brandon Research Centre, Grand Valley Rd., Brandon, MB, Canada, R7A 5Y3
Search for more papers by this authorShabtai Bittman
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, PO Box 1000, Agassiz, BC, Canada, V0M 1A0
Search for more papers by this authorCraig F. Drury
Agriculture and Agri-Food Canada, Greenhouse and Processing Crop Res. Centre, Harrow, ON, Canada, N0R 1G0
Search for more papers by this authorBrian G. McConkey
Agriculture and Agri-Food Canada, Semi-Arid Prairie Agricultural Research Centre, PO Box 1030, Swift Current, SK, Canada, S9H 3X2
Search for more papers by this authorNoura Ziadi
Agriculture and Agri-Food Canada, Soil and Crop Research Dev. Centre, Sainte-Foy, QC, Canada, G1V 2J3
Search for more papers by this authorMehdi Sharifi
Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, NB, Canada, E3B 4Z7
Search for more papers by this authorCorresponding Author
Bernie J. Zebarth
Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, NB, Canada, E3B 4Z7
Corresponding author ([email protected]).Search for more papers by this authorDavid L. Burton
Dep. of Environmental Science, Nova Scotia Agricultural College, PO Box 550, 21 Cox Rd., Truro, NS, Canada, B2N 5E3
Search for more papers by this authorCynthia A. Grant
Agriculture and Agri-Food Canada, Brandon Research Centre, Grand Valley Rd., Brandon, MB, Canada, R7A 5Y3
Search for more papers by this authorShabtai Bittman
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, PO Box 1000, Agassiz, BC, Canada, V0M 1A0
Search for more papers by this authorCraig F. Drury
Agriculture and Agri-Food Canada, Greenhouse and Processing Crop Res. Centre, Harrow, ON, Canada, N0R 1G0
Search for more papers by this authorBrian G. McConkey
Agriculture and Agri-Food Canada, Semi-Arid Prairie Agricultural Research Centre, PO Box 1030, Swift Current, SK, Canada, S9H 3X2
Search for more papers by this authorNoura Ziadi
Agriculture and Agri-Food Canada, Soil and Crop Research Dev. Centre, Sainte-Foy, QC, Canada, G1V 2J3
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
Tillage practices may affect the active fraction of soil organic N. As part of a national project to examine soil management and environmental controls on the active fraction of organic N, this study examined the effects of no-till (NT) and conventional tillage (CT) systems on the quantity of potentially mineralizable soil N (N0) and mineralizable N pools, and the potential to detect changes in these pools using N availability indices. Preplant soil samples from the top 15 cm were collected from four long-term tillage experiments at Swift Current, SK; Woodslee, ON; L'Acadie, QC; and Agassiz, BC. Potentially mineralizable N was determined by aerobic incubation at 25°C and periodic leaching for 24 wk. The N0 was greater under NT than under CT, but only at Swift Current. The labile and intermediate mineralizable N pools were significantly higher under NT than under CT at three of the four sites. The stable mineralizable N pool and the mineralization rate coefficient (k) were greater under NT than under CT at only one of the four sites. Adoption of NT influenced the quality of the active organic N fraction at three sites, as indicated by an increased proportion of mineralizable N in the more labile N pools. Among tested indices of N availability, KCl-extractable NH4–N, NaOH-extractable N, Illinois Soil N Test, phosphate-borate buffer extractable N, and particulate organic C were most sensitive to tillage-induced changes in the active organic N fraction. Tillage-induced changes in the size and quality of the active organic N fraction may influence soil N supply and should be considered in optimizing fertilizer N management.
References
- 1Angers, D.A., Bolinder, M.A., Carter, M.R., Gregorich, E.G., Drury, C.F., Liang, B.C., Voroney, R.P., Simard, R.R., Donald, R.G., Beyaert, R.P., and Martel, J. Impact of tillage practices on organic carbon and nitrogen in cool, humid soils of eastern Canada. Soil Tillage Res. 1997 41 191–201. https://doi.org/10.1016/S0167-1987(96)01100-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XD02800003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Angers, D.A., and Carter, M.R. Aggregation and organic matter storage in cool, humid agricultural soils. p. 193–211. M.R. Carter, and B.A. Stewart (ed.) Structure and organic matter storage in agricultural soils. Adv. Soil Sci. CRC Press, Boca Raton, FL. 1996
- 3Angers, D.A., Voroney, R.P., and Cote, D. Dynamic of soil organic matter and corn residues as affected by tillage practices. Soil Sci. Soc. Am. J. 1995 59 1311–1315. https://doi.org/10.2136/sssaj1995.03615995005900050016x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RU91700016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 4Bailey, V.L., Bolton, H. Jr., and Smith, J.L. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 2002 34 997–1007. https://doi.org/10.1016/S0038-0717(02)00033-0, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176977600011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Balota, E.L., Filho, A.C., Andrade, D.S., and Dick, R.P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 2004 77 137–145. https://doi.org/10.1016/j.still.2003.12.003, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221350100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Banerjee, M.R., Burton, D.L., and Grant, C.A. Influence of urea fertilization and urease inhibitor on the size and activity of the soil microbial biomass under conventional and zero tillage at two sites. Can. J. Soil Sci. 1999 79 255–263. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081215100002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Beare, M.H., Cabrera, M.L., Hendrix, P.F., and Coleman, D.C. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci. Soc. Am. J. 1994 58 787–795. https://doi.org/10.2136/sssaj1994.03615995005800030021x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NX64700021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Blake, G.R., and Hartge, K.H. Bulk density. p. 363–375. A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1986
10.2136/sssabookser5.1.2ed.c13 Google Scholar
- 9Campbell, C.A., Jame, Y.W., Akinremi, O.O., and Beckie, H.J. Evaluating potential N mineralization for predicting fertilizer N requirements of long-term field experiments. p. 81–100. J.L. Havlin, and J.S. Jacobson (ed.) Soil testing: Prospects for improving nutrient recommendations. SSSA Spec. Publ. 40. SSSA and ASA, Madison, WI. 1994
- 10Carter, M.R. Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res. 1986 7 29–40. https://doi.org/10.1016/0167-1987(86)90005-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986C775400004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Carter, M.R., and Rennie, D.A. Changes in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potential. Can. J. Soil Sci. 1982 62 587–597. https://doi.org/10.4141/cjss82-066, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1982PY40900005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Christensen, N.B., Lindemann, W.C., Salazar-Sosa, E., and Gil, L.R. Nitrogen and carbon dynamics in no-till and stubble mulch tillage systems. Agron. J. 1994 86 298–303. https://doi.org/10.2134/agronj1994.00021962008600020017x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994NP04700017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.2134/agronj1994.00021962008600020017x Google Scholar
- 13Curtin, D., and Campbell, C.A. Mineralizable nitrogen. p. 599–606. M.R. Carter, and E.G. Gregorich (ed.) Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Raton, FL. 2007
- 14Drury, C.F., Zhang, T.Q., and Kay, B.D. The non-limiting and least limiting water ranges for soil nitrogen mineralization. Soil Sci. Soc. Am. J. 2003 67 1388–1404. https://doi.org/10.2136/sssaj2003.1388, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000185303200009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Ellert, B.H., and Bettany, J.R. Temperature dependence of net nitrogen and sulfur mineralization. Soil Sci. Soc. Am. J. 1988 56 1133–1141
- 16Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986 50 627–633. https://doi.org/10.2136/sssaj1986.03615995005000030017x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986C809700017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Franzluebbers, A.J. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biol. Biochem. 1999 31 1083–1090. https://doi.org/10.1016/S0038-0717(99)00022-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080809200002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Franzluebbers, A.J., and Arshad, M.A. Soil organic matter pools with conventional and zero tillage in a cold, semiarid climate. Soil Tillage Res. 1996 39 1–11. https://doi.org/10.1016/S0167-1987(96)01055-0, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VY61900001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Franzluebbers, A.J., and Arshad, M.A. Particulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Sci. Soc. Am. J. 1997 61 1382–1386. https://doi.org/10.2136/sssaj1997.03615995006100050014x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YB54800014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Gee, G.W., and Bauder, J.W. Particle-size analysis. p. 383–411. A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1986
- 21Gianello, C., and Bremner, J.M. A simple chemical method of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 1986 17 195–214. https://doi.org/10.1080/00103628609367708, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986A453200007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Gianello, C., and Bremner, J.M. A rapid steam distillation method of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 1988 19 1551–1568. https://doi.org/10.1080/00103628809368034, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988P963500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.1080/00103628809368034 Google Scholar
- 23Grace, P.R., MacRae, I.C., and Myers, R.J.K. Temporal changes in microbial biomass and N mineralization under simulated field cultivation. Soil Biol. Biochem. 1993 25 1745–1753. https://doi.org/10.1016/0038-0717(93)90179-F, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993ML44600015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Greenfield, L.G. The origin and nature of organic nitrogen in soil as assessed by acidic and alkaline hydrolysis. Eur. J. Soil Sci. 2001 52 575–583. https://doi.org/10.1046/j.1365-2389.2001.00419.x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173050300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25Gregorich, E.G., and Beare, M.H. Physically uncomplexed organic matter. p. 607–616. M.R. Carter, and E.G. Gregorich (ed.) Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Raton, FL. 2007
- 26Griffin, T.S. Nitrogen availability. p. 613–646. J.S. Schepers, and W.R. Raun (ed.) Nitrogen in agricultural systems. Agron. Monogr. 49. ASA, CSSA, and SSSA, Madison, WI (in press). 2008
- 27Hussain, I., Olson, K.R., and Ebelhar, S.A. Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci. Soc. Am. J. 1999 63 1335–1341. https://doi.org/10.2136/sssaj1999.6351335x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083839800036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Liang, B.C., MacKenzie, A.F., and Gregorich, E.G. Changes in 15N abundance and amounts of biologically active soil nitrogen. Biol. Fertil. Soils 1999 30 69–74. https://doi.org/10.1007/s003740050589, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083867500011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Liang, B.C., McConkey, B.G., Campbell, C.A., Curtin, D., Lafond, G.P., Brandt, S.A., and Moulin, A.P. Total and labile soil organic nitrogen as influenced by crop rotations and tillage in Canadian prairie soils. Biol. Fertil. Soils 2004 39 249–257. https://doi.org/10.1007/s00374-003-0712-4, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000220086800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Malhi, S.S., Grant, C.A., Johnston, A.M., and Gill, K.S. Nitrogen fertilization management for no-till cereal production in Canadian Great Plains: A review. Soil Tillage Res. 2001 60 101–122. https://doi.org/10.1016/S0167-1987(01)00176-3, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169674000001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Meisinger, J.J., Bandel, V.A., Stanford, G., and Legg, J.O. Nitrogen utilization of corn under minimal tillage and moldboard plow tillage: I. Four-year results using labeled N fertilizer on an Atlantic Coastal Plain soil. Agron. J. 1985 77 602–611. https://doi.org/10.2134/agronj1985.00021962007700040022x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1985AMT5100020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Mikha, M.M., and Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004 68 809–816. https://doi.org/10.2136/sssaj2004.0809, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000221351400014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Mikha, M.M., Rice, C.W., and Benjamin, J.G. Estimating soil mineralizable nitrogen under different management practices. Soil Sci. Soc. Am. J. 2006 70 1522–1531. https://doi.org/10.2136/sssaj2005.0253, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000240666800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Mulvaney, R.L., Khan, S.A., and Ellsworth, T.R. Need for a soil based approach in managing nitrogen fertilizers for profitable corn production. Soil Sci. Soc. Am. J. 2006 70 172–182. https://doi.org/10.2136/sssaj2005.0034, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000235088200020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Needelman, B.A., Wander, M.M., Bollero, G.A., Boast, C.W., Sims, G.K., and Bullock, D.G. Interaction of tillage and soil texture: Biologically active soil organic matter in Illinois. Soil Sci. Soc. Am. J. 1999 63 1326–1334. https://doi.org/10.2136/sssaj1999.6351326x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083839800035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Paustian, K., Collins, H.P., and Paul, E.A. Management controls on soil carbon. p. 15–49. E.A. Paul et al. (ed.) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL. 1997
- 37Rice, C.W., Grove, J.H., and Smith, M.S. Estimating soil net nitrogen mineralization as affected by tillage and soil drainage due to topographic position. Can. J. Soil Sci. 1987 67 513–520. https://doi.org/10.4141/cjss87-048, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K282700008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Rice, C.W., Smith, M.S., and Blevins, R.L. Soil nitrogen availability after long-term continuous no-tillage and conventional tillage corn production. Soil Sci. Soc. Am. J. 1986 50 1206–1210. https://doi.org/10.2136/sssaj1986.03615995005000050023x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986E493500023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 39Serna, M.D., and Pomares, F. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils. Soil Sci. Soc. Am. J. 1992 56 1486–1491. https://doi.org/10.2136/sssaj1992.03615995005600050025x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JX04200026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Sharifi, M., Zebarth, B.J., Burton, D.L., Grant, C.A., and Cooper, J.M. Evaluation of some indices of potentially mineralizable nitrogen in soil. Soil Sci. Soc. Am. J. 2007 71 1233–1239. https://doi.org/10.2136/sssaj2006.0265, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000248103200017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Sharifi, M., Zebarth, B.J., Burton, D.L., Grant, C.A., Hajabbasi, M.A., and Abbassi-Kalo, G. Sodium hydroxide direct-distillation: A method for estimating total nitrogen in soil. Commun. Soil Sci. Plant Anal. (in press). 2008
- 42Six, J., Elliott, E.T., and Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999 63 1350–1358. https://doi.org/10.2136/sssaj1999.6351350x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083839800038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Six, J., Elliott, E.T., and Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000 32 2099–2103. https://doi.org/10.1016/S0038-0717(00)00179-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000165987000012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44Skjemstad, J.O., and Baldock, J.A. Total and organic carbon. p. 225–237. M.R. Carter, and E.G. Gregorich (ed.) Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Raton, FL. 2007
- 45Soon, Y.K., Clayton, G.W., and Rice, W.A. Tillage and previous crop effects on dynamics of nitrogen in a wheat–soil system. Agron. J. 2001 93 842–849. https://doi.org/10.2134/agronj2001.934842x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000170047500013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 46Stanford, G., and Smith, S.J. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. J. 1972 36 465–472. https://doi.org/10.2136/sssaj1972.03615995003600030029x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1972M907600019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 47Thomsen, I.K., and Sørensen, P. Tillage-induced N mineralization and N uptake in winter wheat on a coarse sandy loam. Soil Tillage Res. 2006 89 58–69. https://doi.org/10.1016/j.still.2005.06.011, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000238087900006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 48Voroney, R.P., Brookes, P.C., and Beyaert, R.P. Soil microbial biomass C, N, P, and S. p. 637–651. M.R. Carter, and E.G. Gregorich (ed.) Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Raton, FL. 2007
- 49Wander, M.M., and Bidart, M.G. Tillage practice influences on the physical protection, bioavailability and composition of particulate organic matter. Biol. Fertil. Soils 2000 32 360–367. https://doi.org/10.1007/s003740000260, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000165872400002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 50Wander, M.M., and Yang, X. Influence of tillage on the dynamics of loose- and occluded-particulate and humified organic matter fractions. Soil Biol. Biochem. 2000 32 1151–1160. https://doi.org/10.1016/S0038-0717(00)00031-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088575100012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 51Wood, C.W., and Edwards, J.H. Agroecosystem management effects on soil carbon and nitrogen. Agric. Ecosyst. Environ. 1992 39 123–138. https://doi.org/10.1016/0167-8809(92)90048-G, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HV90800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 52Yoo, G., and Wander, M.M. Influence of tillage practices on soil structural controls over carbon mineralization. Soil Sci. Soc. Am. J. 2006 70 651–659. https://doi.org/10.2136/sssaj2005.0036, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000236009100037&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 53Zebarth, B.J., and Milburn, P.H. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Can. J. Soil Sci. 2003 83 183–195. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000183646500005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4