Journal list menu
Denitrification and Nitrate Consumption in an Herbaceous Riparian Area and Perennial Ryegrass Seed Cropping System
Corresponding Author
Jennifer H. Davis
USDA-ARS, NFSPRC, Corvallis, OR, 97331
Corresponding author ([email protected]).Search for more papers by this authorWilliam R. Horwath
Univ. of California, Plant and Environmental Sci., Davis, CA, 95616-8627
Search for more papers by this authorJeffrey J. Steiner
USDA-ARS National Program Staff, Beltsville, MD, 20705
Search for more papers by this authorDavid D. Myrold
Oregon State Univ., Crop and Soil Sci., Corvallis, OR, 97331
Search for more papers by this authorCorresponding Author
Jennifer H. Davis
USDA-ARS, NFSPRC, Corvallis, OR, 97331
Corresponding author ([email protected]).Search for more papers by this authorWilliam R. Horwath
Univ. of California, Plant and Environmental Sci., Davis, CA, 95616-8627
Search for more papers by this authorJeffrey J. Steiner
USDA-ARS National Program Staff, Beltsville, MD, 20705
Search for more papers by this authorDavid D. Myrold
Oregon State Univ., Crop and Soil Sci., Corvallis, OR, 97331
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
Riparian ecosystems have the capacity to lower NO3− concentrations in groundwater entering from nonpoint agricultural sources. The processes responsible for decreases in riparian groundwater NO3− concentrations in the Willamette Valley of Oregon are not well understood. Our objective was to determine if denitrification and/or dissimilatory NO3− reduction to NH4+ (DNRA) could explain decreases in groundwater NO3− moving from a perennial ryegrass cropping system into a mixed-herbaceous riparian area. In situ denitrification rates (DN) were not different between the riparian area (near-stream or near-cropping system) and cropping system the first year. In the second year, during the transition to a clover planting, DN was highest just inside of the riparian/cropping system border. Median denitrification enzyme activity (DEA) rates ranged from 29.5 to 44.6 mg N2O-N kg−1 d−1 for surface soils (0–15 cm) and 0.7 to 1.7 μg N2O-N kg−1 d−1 in the subsoil (135–150 cm). Denitrification enzyme activity rates were not different among the zones and were most often correlated to soil moisture and NH4+ Nitrate additions to surface soils increased DEA rates, indicating a potential to denitrify additional NO3− Based on groundwater velocity estimates, NO3− (3.8 mg NO3−-N L−1) entering the riparian surface soil could have been consumed in 0.2 to 7 m by denitrification and 0.03 to 1.0 m by DNRA. Denitrification rates measured in the subsoil could not explain the spatial decrease in NO3− However, with the potentially slow movement of water in the subsoil, denitrification and DNRA (0 to 264 μg N kg−1 d−1) together could have completely consumed NO3− within 0.5 m of entering the riparian zone.
References
- 1Abbasi, M.K., and Adams, W.A. Loss of nitrogen in compacted grassland soil by simultaneous nitrification and denitrification. Plant Soil 1998 200 265–277 https://doi.org/10.1023/A:1004398520150 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074849600015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Ambus, P., and Lowrance, R. Comparison of denitrification in two riparian soils. Soil Sci. Soc. Am. J. 1991 55 994–997 https://doi.org/10.2136/sssaj1991.03615995005500040017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991GC43600017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Aulakh, M.S., Doran, J.W., and Mosier, A.R. Soil denitrification–Significance, measurement, and effects of management, p. 1–57 Adv. in Soil Sci., Vol. 18. Springer-Verlag, New York. 1992
- 4Bardgett, R.D., and Shine, A. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol. Biochem. 1999 31 317–321 https://doi.org/10.1016/S0038-0717(98)00121-7 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079006100017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Bengtsson, G., and Bergwall, C. Fate of 15N labeled nitrate and ammonium in a fertilized forest soil. Soil Biol. Biochem. 2000 32 545–557 https://doi.org/10.1016/S0038-0717(99)00183-2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086255300011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Bijay-Singh, J.C., and Ryden Whitehead, D.C. Denitrification potential and actual rates of denitrification in soils under long-term grassland and arable cropping. Soil Biol. Biochem. 1989 21 897–901 https://doi.org/10.1016/0038-0717(89)90078-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AZ60500004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Boersma, L., Simonson, G.H., and Watts, D.G. Soil morphology and water table relations: I. Annual water table fluctuations. Soil Sci. Soc. Am. Proc. 1972 36 644–648 https://doi.org/10.2136/sssaj1972.03615995003600040040x
- 8Brooks, P.D., Stark, J.M., McInteer, B.B., and Preston, T. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci. Soc. Am. J. 1989 53 1707–1711 https://doi.org/10.2136/sssaj1989.03615995005300060016x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989CE50600016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Bruland, G.L., Richardson, C.J., and Whalen, S.C. Spatial variability of denitrification potential and related soil properties in created, restored, and paired natural wetlands. Wetlands 2006 26 1042–1056 https://doi.org/10.1672/0277-5212(2006)26[1042:SVODPA]2.0.CO;2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243370000014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Buresh, R.J., and Patrick, W.H. Nitrate reduction to ammonium in anaerobic soils. Soil Sci. Soc. Am. J. 1978 42 913–918 https://doi.org/10.2136/sssaj1978.03615995004200060017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1978GH95400017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Casey, R.E., Taylor, M.D., and Klaine, S.J. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland. J. Environ. Qual. 2001 30 1732–1737 https://doi.org/10.2134/jeq2001.3051732x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174863300030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Castle, K., Arah, J.R.M., and Vinten, A.J.A. Denitrification in intact subsoil cores. Biol. Fertil. Soils 1998 28 12–18 https://doi.org/10.1007/s003740050457 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077299100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13Christensen, S., Simpkins, S., and Tiedje, J.M. Spatial variation in denitrification: Dependency of activity centers on the soil environment. Soil Sci. Soc. Am. J. 1990 54 1608–1613 https://doi.org/10.2136/sssaj1990.03615995005400060016x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EX69100016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 14Clement, J.C., Pinay, G., and Marmonier, P. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. J. Environ. Qual. 2002 31 1025–1037 https://doi.org/10.2134/jeq2002.1025 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000175519300038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Clement, J.C., Holmes, R.M., Peterson, B.J., and Pinay, G. Isotopic investigation of denitrification in a riparian ecosystem in western France. J. Appl. Ecol. 2003 40 1035–1048 https://doi.org/10.1111/j.1365-2664.2003.00854.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000187184500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Cosandey, A.-C., Maître, V., and Guenat, C. Temporal denitrification patterns in different horizons of two riparian soils. Eur. J. Soil Sci. 2003 54 25–37 https://doi.org/10.1046/j.1365-2389.2002.00493.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181107900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Davis, J.H. Role of a grass riparian zone in controlling the fate of nitrogen in a poorly drained agricultural landscape. Ph.D., Oregon State University, Corvallis, OR. 2003
- 18Davis, J.H., Griffith, S.M., Horwath, W.R., Steiner, J.J., and Myrold, D.D. Fate of nitrogen-15 in a perennial ryegrass seed field and herbaceous riparian area. Soil Sci. Soc. Am. J. 2006 70 909–919 https://doi.org/10.2136/sssaj2005.0223 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237344500024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Davis, J.H., Griffith, S.M., Horwath, W.R., Steiner, J.J., and Myrold, D.D. Mitigation of shallow groundwater nitrate in a poorly drained riparian area and adjacent cropland. J. Environ. Qual. 2007 36 628–637 https://doi.org/10.2134/jeq2006.0186 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000246430500003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20De Catanzaro, J.B., Beauchamp, E.G., and Drury, C.F. Denitrification vs. dissimilatory nitrate reduction in soil with alfalfa, straw, glucose and sulfide treatments. Soil Biol. Biochem. 1987 19 583–587 https://doi.org/10.1016/0038-0717(87)90102-7 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987J667100014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Dhondt, K., Boeckx, P., Hofman, G., and Cleemput, O.V. Temporal and spatial patterns of denitrification enzyme activity and nitrous oxide fluxes in three adjacent vegetated riparian buffer zones. Biol. Fertil. Soils 2004 40 243–251 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000223557500005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Dillaha, T.A., Reneau, R.B., Mostaghimi, S., and Lee, D. Vegetative filter strips for agricultural nonpoint source pollution control. Trans. ASAE 1989 32 513–519
- 23Doran, J.W. Microbial biomass and mineralizable nitrogen distributions in no tillage and plowed soils. Biol. Fertil. Soils 1987 5 68–75 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K575000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Duff, J.H., and Triska, F.J. Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can. J. Fish. Aqu. Sci. 1990 47 1140–1147 https://doi.org/10.1139/f90-133
- 25Fazzolari, E., Nicolardot, B., and Germon, J.C. Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores. Eur. J. Soil Biol. 1998 34 47–52 https://doi.org/10.1016/S1164-5563(99)80006-5 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077679000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Folorunso, O.A., and Rolston, D.E. Spatial variabilty of field measured denitrification gas fluxes. Soil Sci. Soc. Am. J. 1984 48 1214–1219 https://doi.org/10.2136/sssaj1984.03615995004800060002x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984TY27000002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Groffman, P.M., Gold, A.J., and Howard, G. Hydrologic tracer effects on soil microbial activities. Soil Sci. Soc. Am. J. 1995 59 478–481 https://doi.org/10.2136/sssaj1995.03615995005900020030x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QV26600030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Groffman, P.M., Howard, G., Gold, A.J., and Nelson, W.M. Microbial nitrate processing in shallow groundwater in a riparian forest. J. Environ. Qual. 1996 25 1309–1316 https://doi.org/10.2134/jeq1996.00472425002500060020x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VW22600033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Haycock, N.E., and Pinay, G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. J. Environ. Qual. 1993 22 273–278 https://doi.org/10.2134/jeq1993.222273x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LE94700007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Hillel, D. Environmental soil physics. Academic Press, San Diego. 1998
- 31Horwath, W.R., Elliott, L.F., Steiner, J.J., Davis, J.H., and Griffith, S.M. Denitrification in cultivated and noncultivated riparian areas of grass cropping systems. J. Environ. Qual. 1998 27 225–231 https://doi.org/10.2134/jeq1998.00472425002700010032x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000071646800032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Horwath, W.R., Paul, E.A., Harris, D., Norton, J., Jagger, L., and Horton, K.A. Defining a realistic control for the chloroform fumigation-incubation method using microscopic counting and 14C-substrates. Can. J. Soil Sci. 1996 76 459–467 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VX99900004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33Israel, D., Showers, W.J., Fountain, M., and Fountain, J. Nitrate movement in shallow ground water from swine-lagoon-effluent spray fields managed under current application regulations. J. Environ. Qual. 2005 34 1828–1842 https://doi.org/10.2134/jeq2004.0338 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000232174300038&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Jacinthe, P.A., Groffman, P.M., Gold, A.J., and Mosier, A. Patchiness in microbial nitrogen transformations in groundwater in a riparian forest. J. Environ. Qual. 1998 27 156–164 https://doi.org/10.2134/jeq1998.00472425002700010022x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000071646800022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Jacobs, T.J., and Gilliam, J.W. Riparian losses of nitrate from agricultural drainage waters. J. Environ. Qual. 1985 14 472–478 https://doi.org/10.2134/jeq1985.00472425001400040004x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1985AUF5100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Jarvis, S.C., and Hatch, D.J. Potential for denitrification at depth below long-term grass swards. Soil Biol. Biochem. 1994 26 1629–1636 https://doi.org/10.1016/0038-0717(94)90315-8 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PW77200005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992 28 1657–1668 https://doi.org/10.1029/92WR00252 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HX30900014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38Liebig, M.A., Varvel, G.E., Doran, J.W., and Wienhold, B.J. Crop sequence and nitrogen fertilization effects on soil properties in the western corn belt. Soil Sci. Soc. Am. J. 2002 66 596–601 https://doi.org/10.2136/sssaj2002.0596 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174275000032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 39Lind, A.M., and Eiland, F. Microbiological characterization and nitrate reduction in subsurface soils. Biol. Fertil. Soils 1989 8 197–203 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989AX39900002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Lowrance, R., and Sheridan, J.M. Surface runoff water quality in a managed three zone riparian buffer. J. Environ. Qual. 2005 34 1851–1859 https://doi.org/10.2134/jeq2004.0291 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000232174300040&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Lowrance, R.R. Groundwater nitrate and denitrification in a coastal plain riparian forest. J. Environ. Qual. 1992 21 401–405 https://doi.org/10.2134/jeq1992.00472425002100030017x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992JG87200016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Lowrance, R.R., Todd, R.L.J.F. Jr, Hendrickson, J.O., Leonard, R., and Asmussen, L. Riparian forests as nutrient filters in agricultural watersheds. Bioscience 1984 34 374–377 https://doi.org/10.2307/1309729 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984SS39200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Luo, J., Tillman, R.W., and Ball, P.R. Factors regulating denitrification in a soil under pasture. Soil Biol. Biochem. 1999 31 913–927 https://doi.org/10.1016/S0038-0717(99)00013-9 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080235700012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44Martin, T.L., Kaushik, N.K., Trevors, J.T., and Whitely, H.R. Denitrification in temperate climate riparian zones. Water Air Soil Pollut. 1999 111 171–186 https://doi.org/10.1023/A:1005015400607 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079992300012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 45McAllister, L.S., Dwire, K.A., and Griffith, S.M. Vegetation characterization of three contrasting riparian sites, Willamette Valley, Oregon. p. 29–33, P. J. Wigington, and R. L. Beschta (ed.) International Conference on Riparian Ecology and Management in Multi-Land Use Watersheds. Vol. TPS-00–2. American Water Resources Assoc., Middleburg, VA. 2000
- 46McCarty, G.W., and Bremner, J.M. Availability of organic carbon for denitrification of nitrate in subsoils. Biol. Fertil. Soils 1992 14 219–222 https://doi.org/10.1007/BF00346064 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992KA50800010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 47Merrill, A.G., and Benning, T.L. Ecosystem type differences in nitrogen process rates and controls in the riparian zone of a montane landscape. For. Ecol. Manage. 2006 222 145–161 https://doi.org/10.1016/j.foreco.2005.10.001 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000235599700016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 48Mosier, A.R., and Klemedtsson, L. Measuring denitrification in the field. p. 1047–1066. J. M. Bigham (ed.) Methods of soil anaylsis: Microbiological and biochemical properties. SSSA, Madison, WI. 1994
- 49Muller, C., Stevens, R.J., and Laughlin, R.J. A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol. Biochem. 2004 36 619–632 https://doi.org/10.1016/j.soilbio.2003.12.006 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000220786200007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 50Myrold, D.D. Denitrification in ryegrass and winter wheat cropping systems of western Oregon. Soil Sci. Soc. Am. J. 1988 52 412–416 https://doi.org/10.2136/sssaj1988.03615995005200020019x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988N190100019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 51Nelson, M.A., Griffith, S.M., and Steiner, J.J. Tillage effects on nitrogen dynamics and grass seed crop production in Western Oregon, USA. Soil Sci. Soc. Am. J. 2006 70 825–831 https://doi.org/10.2136/sssaj2005.0248 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237344500014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 52 Oregon Climate Service. Oregon climate data [Online]. Available at. (verified 10 Apr. 2008). Oregon Climate Service. 2005
- 53Parkin, T.B. Soil microsites as a source of denitrification variability. Soil Sci. Soc. Am. J. 1987 51 1196–1199
- 54Parkin, T.B., and Meisinger, J.J. Denitrification below the crop rooting zone as influenced by surface tillage. J. Environ. Qual. 1989 18 12–16 https://doi.org/10.2134/jeq1989.18112x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989T254500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 55Pell, M., Steinberg, B., Stenstrom, J., and Torstensson, L. Potential denitrification activity assay in soil—With or without chloramphenicol? Soil Biol. Biochem. 1996 28 393–398 https://doi.org/10.1016/0038-0717(95)00149-2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TZ09100015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 56Peterjohn, W.T., and Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984 65 1466–1475 https://doi.org/10.2307/1939127 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984TL34200014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 57Puckett, L.J., Cowdery, T.K., McMahon, P.B., Tornes, L.H., and Stoner, J.D. Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour. Res. 2002 38 1134–1154 https://doi.org/10.1029/2001WR000396
- 58Reddy, K.R., and Patrick, W.H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem. 1975 7 87–94 https://doi.org/10.1016/0038-0717(75)90004-8 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1975V830200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 59Reddy, K.R., Rao, P.S., and Jessup, R.E. The effect of carbon mineralization on denitrification kinetics in mineral and organic soils. Soil Sci. Soc. Am. J. 1982 46 62–68 https://doi.org/10.2136/sssaj1982.03615995004600010011x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1982NP46200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 60Richards, J.E., and Webster, C.P. Denitrification in the subsoil of the broadbalk continuous wheat experiment. Soil Biol. Biochem. 1999 31 747–755 https://doi.org/10.1016/S0038-0717(98)00174-6 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000080092100011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 61Schaap, M.G. Rosetta Lite. Version 1.0. U.S. Salinity Laboratory, USDA, ARS, Riverside, CA. 1999
- 62Schilling, K.E., Zhongwei, L., and Zhang, Y.-K. Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. J. Hydrol. 2006 327 140–150 https://doi.org/10.1016/j.jhydrol.2005.11.014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000239671700011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 63Schipper, L.A., Cooper, A.B., Harfoot, C.G., and Dyck, W.J. Regulators of denitrification in an organic riparian soil. Soil Biol. Biochem. 1993 25 925–933 https://doi.org/10.1016/0038-0717(93)90095-S http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993LK32700016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 64Schnabel, R.R., Cornish, L.F., Stout, W.L., and Shaffer, J.A. Denitrification in a grassed and wooded, valley and ridge, riparian ecotone. J. Environ. Qual. 1996 25 1230–1235 https://doi.org/10.2134/jeq1996.2561230x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VW22600022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 65Silver, W.L., Herman, D.J., and Firestone, M.K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 2001 82 2410–2416 https://doi.org/10.1890/0012-9658(2001)082[2410:DNRTAI]2.0.CO;2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000171049100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 66Smith, M.S., and Tiedje, J.M. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 1979 11 261–267 https://doi.org/10.1016/0038-0717(79)90071-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979GZ86000008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 67Sokal, R.R., and Rohlf, F.J. Biometry: The principles and practice of statistics in biological research. 2d ed. W. H. Freeman, San Francisco. 1981
- 68 SPSS Inc. SPSS 11.0 for MaxOSX. SPSS, Inc., Chicago, Il. 2005
- 69Sylvia, D.M., Fuhrmann, J.J., Hartel, P.G., and Zuberer, D.A. Principles and Applications of Soil Microbiology. Prentice Hall, Upper Saddle River, NJ. 1999
- 70Tesoriero, A.J., Liebscher, H., and Cox, S.E. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths. Water Resour. Res. 2000 36 1545–1559 https://doi.org/10.1029/2000WR900035 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087226800016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 71Tiedje, J.M. Denitrification. p. 1011–1024. A. L. Page et al (ed.) Methods of soil analysis. Agron. Monogr. 9. Part 2. 2nd ed. ASA and SSSA, Madison, WI. 1982
- 72Tiedje, J.M., Sorensen, J., and Chang, Y.-Y.L. Assimilatory and dissimilatory nitrate reduction: perspectives and methodology for simultaneous measurement of several nitrogen cycle processes. p. 331–342. F.E. Clark, and T. Rosswall (ed.) Terrestrial nitrogen cycles. Vol. 33. Ecol. Bull., Stockholm. 1981
- 73Trudell, M.R., Gillham, R.W., and Cherry, J.A. An in-situ study of the occurance and rate of denitrification in a shallow unconfined aquifer. J. Hydrol. 1986 83 251–268 https://doi.org/10.1016/0022-1694(86)90155-1 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986A693600005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 74Vought, L.B.-M., Dahl, J., Pedersen, C.L., and Lacoursiere, J.O. Nutrient retention in riparian ecotones. Ambio 1994 23 342–348 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PN58600005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 75Warren, K. Transport of water and solutes from tile-drained fields in the Willamette Valley, OR: A field study. M.S., Oregon State University, Corvallis, OR. 2002
- 76Weier, K.L., Doran, J.W., Power, J.F., and Walters, D.T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 1993 57 66–72 https://doi.org/10.2136/sssaj1993.03615995005700010013x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993KW02200012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 77Wigington, P.J., Griffith, S.M., Field, J.A., Baham, J.E., Horwath, W.R., Owen, J., Davis, J.H., Rain, S.C., and Steiner, J.J. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon. J. Environ. Qual. 2003 32 162–170 https://doi.org/10.2134/jeq2003.0162 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000181953400019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 78Yeates, G.W., Bardgett, R.D., Cook, R., Hobbs, P.J., Bowling, P.J., and Potter, J.F. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J. Appl. Ecol. 1997 34 453–470 https://doi.org/10.2307/2404890 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XB02800015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 79Yeomans, J.C., Bremner, J.M., and McCarty, G.W. Denitrification capacity and denitrification potential of subsurface soils. Commun. Soil Sci. Plant Anal. 1992 23 919–927 https://doi.org/10.1080/00103629209368639 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HY31100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 80Yin, S.X., Chen, D., Chen, L.M., and Edis, R. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol. Biochem. 2002 34 1131–1137 https://doi.org/10.1016/S0038-0717(02)00049-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000177395500009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 81Yoshinari, T., Hynes, R., and Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 1977 9 177–183 https://doi.org/10.1016/0038-0717(77)90072-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1977DE58100008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 82Young, R.A., Huntrods, T., and Anderson, W. Effectiveness of vegetated buffer strips in controlling pollution from feedlot runoff. J. Environ. Qual. 1980 9 483–487 https://doi.org/10.2134/jeq1980.93483x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980KD65200029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4