Journal list menu
Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis
Corresponding Author
D. A. Angers
Soils and Crops Research and Dev. Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec, QC, G1V 2J3 Canada
Corresponding author ([email protected]).Search for more papers by this authorN. S. Eriksen-Hamel
Soils and Crops Research and Dev. Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec, QC, G1V 2J3 Canada
Search for more papers by this authorCorresponding Author
D. A. Angers
Soils and Crops Research and Dev. Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec, QC, G1V 2J3 Canada
Corresponding author ([email protected]).Search for more papers by this authorN. S. Eriksen-Hamel
Soils and Crops Research and Dev. Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Québec, QC, G1V 2J3 Canada
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
While the adoption of no-till (NT) usually leads to the accumulation of soil organic C (SOC) in the surface soil layers, a number of studies have shown that this effect is sometimes partly or completely offset by greater SOC content near the bottom of the plow layer under full-inversion tillage (FIT). Our purpose was to review the literature in which SOC profiles have been measured under paired NT and FIT situations. Only replicated and randomized studies directly comparing NT and FIT for >5 yr were considered. Profiles of SOC had to be measured to at least 30 cm. As expected, in most studies SOC content was significantly greater (P < 0.05) under NT than FIT in the surface soil layers. At the 21- to 25-cm soil depth, however, which corresponds to the mean plowing depth for the data set (23 cm), the average SOC content was significantly greater under FIT than NT. Moreover, under FIT, greater SOC content was observed just below the average depth of plowing (26–35 cm). On average, there was 4.9 Mg ha−1 more SOC under NT than FIT (P = 0.03). Overall, this difference in favor of NT increased significantly but weakly with the duration of the experiment (R2 = 0.15, P = 0.05). The relative accumulation of SOC at depth under FIT could not be related to soil or climatic variables. Furthermore, the organic matter accumulating at depth under FIT appeared to be present in relatively stable form, but this hypothesis and the mechanisms involved require further investigation.
References
- 1Allmaras, R.R., Pikul, J.L., Kraft, J.M., and Wilkins, D.E. A method for measuring incorporated crop residues and associated soil properties. Soil Sci. Soc. Am. J. 1988 52 1128–1133 https://doi.org/10.2136/sssaj1988.03615995005200040044x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988Q194000044&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manage. 2005 21 38–52 https://doi.org/10.1079/SUM2005291 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000229339900007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Angers, D.A., Bolinder, M.A., Carter, M.R., Gregorich, E.G., Drury, C.F., Liang, B.C., Voroney, R.P., Simard, R.R., Donald, R.G., Beyaert, R.P., and Martel, J. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Tillage Res. 1997 41 191–201 https://doi.org/10.1016/S0167-1987(96)01100-2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XD02800003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 4Angers, D.A., and Chenu, C. Dynamics of soil aggregation and C sequestration. p. 199–206. R. Lal et al. (ed.) Soil processes and the carbon cycle. CRC Press, Boca Raton, FL. 1997
- 5Angers, D.A., Voroney, R.P., and Côté, D. Dynamics of soil organic matter and corn residues as affected by tillage practices. Soil Sci. Soc. Am. J. 1995 59 1311–1315 https://doi.org/10.2136/sssaj1995.03615995005900050016x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RU91700016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Balesdent, J., Chenu, C., and Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000 53 215–230 https://doi.org/10.1016/S0167-1987(99)00107-5 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085843700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Balesdent, J., Mariotti, A., and Boisgontier, D. Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J. Soil Sci. 1990 41 587–596 https://doi.org/10.1111/j.1365-2389.1990.tb00228.x
- 8Carter, M.R. A review of conservation tillage strategies for humid temperate regions. Soil Tillage Res. 1994 31 289–301 https://doi.org/10.1016/0167-1987(94)90037-X http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PH83400001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Carter, M.R. Long-term tillage effects on cool-season soybean in rotation with barley, soil properties and carbon and nitrogen storage for fine sandy loams in humid climate of Atlantic Canada. Soil Tillage Res. 2005 81 109–120 https://doi.org/10.1016/j.still.2004.05.002 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000227977600009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Chassot, A., Stamp, P., and Richner, W. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant Soil 2001 231 123–135 https://doi.org/10.1023/A:1010335229111 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000168196000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Clapp, C.E., Allmaras, R.R., Layese, M.F., Linden, D.R., and Dowdy, R.H. Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res. 2000 55 127–142 https://doi.org/10.1016/S0167-1987(00)00110-0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088323500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Coppens, F., Garnier, P., De Gryze, S., Merckx, R., and Recous, S. Soil moisture carbon and nitrogen dynamics following incorporation versus surface application of labelled residues in soil columns. Eur. J. Soil Sci. 2006 57 894–905 https://doi.org/10.1111/j.1365-2389.2006.00783.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000242998500013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13Deen, W., and Kataki, P.K. Carbon sequestration in a long-term conventional versus conservation tillage experiment. Soil Tillage Res. 2003 74 143–150 https://doi.org/10.1016/S0167-1987(03)00162-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000186808400004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 14Diaz-Zorita, M. Effectos de seis años de labranzas en un hapludol del noroeste de Buenos Aires, Argentina. Cienc. Suelo 1999 17 31–36
- 15Dick, W.A., Blevins, R.L., Frye, W.W., Peters, S.E., Christenson, D.R., Pierce, F.J., and Vitosh, M.L. Impacts of agricultural management practices on C sequestration in forest-derived soils of the eastern Corn Belt. Soil Tillage Res. 1998 47 235–244 https://doi.org/10.1016/S0167-1987(98)00112-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074762000006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Dick, W.A., and Durkalski, J.T. No-tillage production agriculture and carbon sequestration in a Typic Fragiudalf soil of northeastern Ohio. p. 59–71. R. Lal et al. (ed.) Management of carbon sequestration in soil. CRC Press, Boca Raton, FL. 1997
- 17Dolan, M.S., Clapp, C.E., Allmaras, R.R., Baker, J.M., and Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006 89 221–231 https://doi.org/10.1016/j.still.2005.07.015 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000238630600009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Doran, J.W. Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol. Fertil. Soils 1987 5 68–75 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K575000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Doran, J.W., Elliott, E.T., and Paustian, K. Soil microbial activity, nitrogen cycling, and long-term changes in organic carbon pools as related to fallow tillage management. Soil Tillage Res. 1998 49 3–18 https://doi.org/10.1016/S0167-1987(98)00150-0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077153200002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 20Edwards, W.M., Shipitalo, M.J., and Norton, L.D. Contribution of macroporosity to infiltration into a continuous corn no-tilled watershed: Implications for contaminant movement. J. Contam. Hydrol. 1988 3 193–205 https://doi.org/10.1016/0169-7722(88)90031-9
- 21Gál, A., Vyn, T.J., Michéli, E., Kladivko, E.J., and McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus mouldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res. 2007 96 42–51 https://doi.org/10.1016/j.still.2007.02.007 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000250689400005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Horáček, J., Ledvina, R., and Raus, A. The content and quality of organic matter in Cambisol in a long-term no-tillage system. Rostl. Vyroba 2001 47 205–210
- 23Huggins, D.R., Allmaras, R.R., Clapp, C.E., Lamb, J.A., and Randall, G.W. Corn–soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci. Soc. Am. J. 2007 71 145–154 https://doi.org/10.2136/sssaj2005.0231 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243947100031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24Ismail, I., Blevins, R.L., and Frye, W.W. Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci. Soc. Am. J. 1994 58 193–198 https://doi.org/10.2136/sssaj1994.03615995005800010028x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MW42200029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25Jarecki, M.K., and Lal, R. Soil organic carbon sequestration rates in two long-term no-till experiments in Ohio. Soil Sci. 2005 170 280–291 https://doi.org/10.1097/00010694-200504000-00005 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000228820200005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Kettler, T.A., Lyon, D.J., Doran, J.W., Powers, W.L., and Stroup, W.W. Soil quality assessment after weed-control tillage in a no-till wheat–fallow cropping system. Soil Sci. Soc. Am. J. 2000 64 339–346 https://doi.org/10.2136/sssaj2000.641339x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089446000045&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Machado, S., Rhinhart, K., and Petrie, S. Long-term cropping system effects on carbon sequestration in eastern Oregon. J. Environ. Qual. 2006 35 1548–1553 https://doi.org/10.2134/jeq2005.0201 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000239189900062&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Murage, E.W., and Voroney, R.P. Distribution of organic carbon in the stable humic fractions as affected by tillage management. Can. J. Soil Sci. 2008 88 99–106 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000253935700008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Olchin, G.P., Ogle, S., Frey, S.D., Filley, T.R., Paustian, K., and Six, J. Residue carbon stabilization in soil aggregates of no-till and tillage management of dryland cropping systems. Soil Sci. Soc. Am. J. 2008 72 507–513 https://doi.org/10.2136/sssaj2006.0417 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000254060200025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Ordónez Fernández, R., González Fernández, P., Giráldez Cervera, J.V., and Perea Torres, F. Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Res. 2007 94 47–54 https://doi.org/10.1016/j.still.2006.07.003 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000245537700006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 31Rasse, D.P., Mulder, J., Moni, C., and Chenu, C. Carbon turnover kinetics with depth in a French loamy soil. Soil Sci. Soc. Am. J. 2006 70 2097–2105 https://doi.org/10.2136/sssaj2006.0056 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000242038300032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Sa, J.C.M., Cerri, C.C., Dick, W.A., Lal, R., Venske Filho, S.P., Piccolo, M.C., and Feigl, B.E. Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. 2001 65 1486–1499 https://doi.org/10.2136/sssaj2001.6551486x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000172918500020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 33 SAS Institute. SAS/STAT user's guide. Version 8. SAS Inst., Cary, NC. 1999
- 34Sisti, C.P.J., dos Santos, H.P., Kohhann, R., Alves, B.J.R., Urquiaga, S., and Boddey, R.M. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res. 2004 76 39–58 https://doi.org/10.1016/j.still.2003.08.007 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000188888400004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Six, J., Feller, C., Denef, K., Ogle, S.M., and Sa, J.C.M. Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 2002 22 755–775 https://doi.org/10.1051/agro:2002043 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000179913800008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Smith, J.L., Bell, J.M., Bolton, H. Jr., and Bailey, V.L. The initial rate of C substrate utilization and longer-term soil C storage. Biol. Fertil. Soils 2007 44 315–320 https://doi.org/10.1007/s00374-007-0206-x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000250833100008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Snedecor, G.W., and Cochran, W.G. Statistical methods. 7th ed. Iowa State Univ., Ames. 1980
- 38Steinbach, H.S., and Alvarez, R. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agro-ecosystems. J. Environ. Qual. 2006 35 3–13 https://doi.org/10.2134/jeq2005.0050
- 39Stemmer, M., von Lützow, M., Kandeler, E., Pichlmayer, F., and Gerzabek, M.H. The effect of maize straw placement on mineralization of C and N in soil particle size fractions. Eur. J. Soil Sci. 1999 50 73–86 https://doi.org/10.1046/j.1365-2389.1999.00204.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081659200008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Vanden Bygaart, A.J., and Angers, D.A. Towards accurate measurements of soil organic carbon stock change in agroecosystems. Can. J. Soil Sci. 2006 86 465–471 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000240051100010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Venterea, R.T., Baker, J.M., Dolan, M.S., and Spokas, K.A. Carbon and nitrogen storage are greater under biennial tillage in a Minnesota corn–-soybean rotation. Soil Sci. Soc. Am. J. 2006 70 1752–1762 https://doi.org/10.2136/sssaj2006.0010 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000240666800033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Wander, M.M., Bidart, M.G., and Aref, S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 1998 62 1704–1711 https://doi.org/10.2136/sssaj1998.03615995006200060031x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077836400031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Wanniarachchi, S.D., Voroney, R.P., Vyn, T.J., Beyaert, R.P., and MacKenzie, A.F. Tillage effects on the dynamics of total and corn-residue derived soil organic matter in two southern Ontario soils. Can. J. Soil Sci. 1999 79 473–480 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000082807000010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44West, T.O., and Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002 66 1930–1946 https://doi.org/10.2136/sssaj2002.1930 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184794400025&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 45Yang, X.M., and Wander, M.M. Tillage effects on soil organic carbon distribution and storage in a silt loam soil in Illinois. Soil Tillage Res. 1999 52 1–9 https://doi.org/10.1016/S0167-1987(99)00051-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083457500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4