Journal list menu
Agronomic Evaluation of a High Protein Allele from PI407788A on Chromosome 15 across Two Soybean Backgrounds
Lillian F. Brzostowski
Dep. of Crop Sciences, Univ. of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801
Search for more papers by this authorCorresponding Author
Brian W. Diers
Dep. of Crop Sciences, Univ. of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801
Corresponding author ([email protected]).Search for more papers by this authorLillian F. Brzostowski
Dep. of Crop Sciences, Univ. of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801
Search for more papers by this authorCorresponding Author
Brian W. Diers
Dep. of Crop Sciences, Univ. of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801
Corresponding author ([email protected]).Search for more papers by this authorAll rights reserved.
Assigned to Associate Editor Zenglu Li.
Abstract
Soybean [Glycine max (L.) Merr.] protein is a prominent plant-based protein source worldwide due to its high quality and relatively low cost. A major barrier to the development of high protein cultivars is the negative relationship between seed protein and seed yield. A large effect protein quantitative trait locus (QTL) has been mapped to the same location on chromosome (chr) 15 in several studies and given the designation, cqSeed protein-001. The objective of this study was to evaluate the effect of the high protein allele from PI407788A at the chr 15 locus on seed composition and agronomic traits. Populations of near isogenic lines (NILs) segregating for the high protein allele on chr 15 were developed by backcrossing this allele into two elite soybean backgrounds, and these NILs were evaluated at four field environments in Illinois. Across the two backgrounds, the PI407788A allele significantly (P < 0.0001) increased seed protein and decreased seed oil compared to the recurrent alleles but had a nonsignificant effect on yield. Information from this study will aid breeders in forming strategies to develop cultivars with increased seed protein and yield to meet the needs of a growing world population.
References
- AbneyT.S. and CrochetW.D. 2006. Uniform soybean tests northern states, 2011. USDA-ARS, West Lafayette, IN.
- AbneyT.S. and HughesT. 2011. Uniform soybean tests northern states, 2011. USDA-ARS, West Lafayette, IN.
- AnandS.C., ShannonJ.G., WratherJ.A., ArelliP.R., SleperD.A. and YoungL.D. 2004. Registration of S97-1688 soybean germplasm line high in protein content and resistant to soybean cyst nematode. Crop Sci. 44: 698–700. doi:10.2135/cropsci2004.6980
- BandilloN., JarquinD., SongQ., NelsonR., CreganP., SpechtJ. and LorenzA. 2015. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8. doi:10.3835/plantgenome2015.04.0024
- Bell-JohnsonB., GarveyG., JohnsonJ., LightfootD. and MeksemK. 1998. Biotechnology approaches to improving resistance to SCN and SDS: Methods for high throughput marker assisted selection. Soybean Genet. Newsl. 25: 115–117.
- BolonY.T., JosephB., CannonS.B., GrahamM.A., DiersB.W., FarmerA.D. et al. 2010. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol. 10: 41. doi:10.1186/1471-2229-10-41
- BrimC.A. and BurtonJ.W. 1979. Recurrent selection in soybeans II: Selection for increased percent protein in seeds. Crop Sci. 19: 494–498. doi:10.2135/cropsci1979.0011183X001900040016x
- BrummT.J. and HurburghC.R. 2006. Changes in long-term soybean compositional patterns. J. Am. Chem. Soc. 83: 981.
- BrummerE.C., GraefG.L., OrfJ., WilcoxJ.R. and ShoemakerR.C. 1997. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 37: 370–378. doi:10.2135/cropsci1997.0011183X003700020011x
- BrzostowskiL.F. 2017. Breeding for increased protein concentration, sudden death syndrome resistance, and soybean cyst nematode resistance in soybean. Ph.D. diss. Univ. of Illinois, Urbana.
- BurtonJ.W. 1987. Quantitative genetics: Results relevant to soybean breeding. In: J.R. Wilcox, editor, Soybeans: Improvement, production, and uses. ASA,CSSA, and SSSA, Madison, WI. p. 211–247.
- BurtonJ., CarterT. and WilsonR. 1999. Registration of ‘Prolina’ soybean. Crop Sci. 39: 294–295. doi:10.2135/cropsci1999.0011183X003900010066x
- CarterT.E., RzewnickiP.E., BurtonJ.W., VillagarciaM.R., BowmanD.T., TaliercioE. and KwanyuenP. 2010. Registration of N6202 soybean germplasm with high protein, favorable yield potential, large seed, and diverse pedigree. J. Plant Reg. 4: 73–79. doi:10.3198/jpr2009.08.0462.crg
- ChenP., IshibashiT., DombekD.G. and RupeJ.C. 2011. Registration of R05–1415 and R05–1772 high-protein soybean germplasm lines. J. Plant Reg. 5: 410–413. doi:10.3198/jpr2010.05.0304crg
- ChungJ., BabkaH.L., GraefG.L., StaswickP.E., LeeD.J., CreganP.B. et al. 2003. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 43: 1053–1067. doi:10.2135/cropsci2003.1053
- CreganP. and QuigleyC. 1997. Simple sequence repeat DNA marker analysis. In: G. Caetano-Anolles, P.M. Gresshoff, editors, DNA markers: Protocols, applications, and overviews. John Wiley & Sons, New York. p. 173–185.
- CromwellG.L. 2012. Soybean meal: An exceptional protein source. Soybean Meal InfoCenter, Ankeny, IA. http://www.soymeal.org/ReviewPapers/SBMExceptionalProteinSource.pdf/ (accessed 30 Jan. 2017).
- DiersB.W., KeimP., FehrW.R. and ShoemakerR.C. 1992. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 83: 608–612. doi:10.1007/BF00226905
- EskandariM., CoberE.R. and RajcanI. 2013. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor. Appl. Genet. 126: 1677–1687. doi:10.1007/s00122-013-2083-z
- FasoulaV.A., HarrisD.K. and BoermaH.R. 2004. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci. 44: 1218–1225. doi:10.2135/cropsci2004.1218
- FehrW., CavinessC., BurmoodD. and PenningtonJ. 1971. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Sci. 11: 929–931. doi:10.2135/cropsci1971.0011183X001100060051x
- HartwigE.E., KuoT.M. and KentyM.M. 1997. Seed protein and its relationship to soluble sugars in soybean. Crop Sci. 37: 770–773. doi:10.2135/cropsci1997.0011183X003700030013x
- HolbrookC.C., BurtonJ.W. and CarterT.E. 1989. Evaluation of recurrent restricted index selection for increasing yield while holding seed protein constant in soybean. Crop Sci. 29: 324–329. doi:10.2135/cropsci1989.0011183X002900020019x
- HwangE.Y., SongQ., JiaG., SpechtJ.E., HytenD.L., CostaJ. and CreganP.B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15: 1. doi:10.1186/1471-2164-15-1
- HymowitzT., CollinsF.I., PancznerJ. and WalkerW.M. 1972. Relationship between the content of oil, protein, and sugar in soybean seed. Agron. J. 64: 613–616. doi:10.2134/agronj1972.00021962006400050019x
- KeimP., OlsonT. and ShoemakerR. 1988. A rapid protocol for isolating soybean DNA. Soybean Genet. Newsl. 12: 150–152.
- KimM., SchultzS., NelsonR. and DiersB.W. 2015. Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci. 56: 219–225. doi:10.2135/cropsci2015.06.0340
- LeeS.H., BaileyM.A., MianR.M., CarterT.E., ShipeE.R., AshleyD.A. et al. 1996. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor. Appl. Genet. 93: 649–657. doi:10.1007/BF00224058
- LeffelR.C. and RhodesW.K. 1993. Agronomic performance and economic value of high-seed-protein soybean. J. Prod. Agric. 6: 365–368. doi:10.2134/jpa1993.0365
- MianR., McHaleL., LiZ. and DorranceA.E. 2017. Registration of ‘Highpro1’ soybean with high protein and high yield developed from a north × south cross. J. Plant Reg. 11: 51–54. doi:10.3198/jpr2016.03.0013crc
- NicholsD.M., GloverK.D., CarlsonS.R., SpechtJ.E. and DiersB.W. 2006. Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci. 46: 834–839. doi:10.2135/cropsci2005.05-0168
- PantheeD.R. and PantaloneV.R. 2006. Registration of soybean germplasm lines TN03-350 and TN04-5321 with improved protein concentration and quality registration by CSSA. Crop Sci. 46: 2328–2329. doi:10.2135/cropsci2005.11.0437
- PathanS.M., VuongT., ClarkK., LeeJ., ShannonJ.G., RobertsC.A. et al. 2013. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci. 53: 765–774. doi:10.2135/cropsci2012.03.0153
- PhansakP., SoonsuwonW., HytenD.L., SongQ., CreganP.B., GraefG.L. and SpechtJ.E. 2016. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs. G3: Genes| Genomes| Genetics. 6: 1635–1648.https://doi.org/10.1534/g3.116.027656
- QiZ., PanJ., HanX., QiH., XinD., LiW., MaoX., WangZ., JiangH., LiuC. and HuZ. 2016. Identification of major QTLs and epistatic interactions for seed protein concentration in soybean under multiple environments based on a high-density map. Mol. Breed. 36: 1–16. doi:10.1007/s11032-016-0475-x
- ReckerJ.R., BurtonJ.W., CardinalA. and MirandaL. 2014. Genetic and phenotypic correlations of quantitative traits in two long-term randomly mated soybean populations. Crop Sci. 54: 939–943. doi:10.2135/cropsci2013.07.0447
- RotundoJ.L. and WestgateM.E. 2009. Meta-analysis of environmental effects on soybean seed composition. Field Crops Res. 110: 147–156. doi:10.1016/j.fcr.2008.07.012
- SAS Institute. 2016. The SAS system for Microsoft Windows. Release 9.4. SAS Inst., Cary, NC.
- SeboltA.M., ShoemakerR.C. and DiersB.W. 2000. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci. 40: 1438–1444. doi:10.2135/cropsci2000.4051438x
- SoyBase. 2017. Soybean breeder's toolbox genetic map information. http://www.soybase.org (accessed 19 Jan. 2017).
- SpechtJ.E., ChaseK., MacranderM., GraefG.L., ChungJ., MarkwellJ.P., GermannM., OrfJ.H. and LarkK.G. 2001. Soybean response to water. Crop Sci. 41: 493–509. doi:10.2135/cropsci2001.412493x
- VaughnJ.N., NelsonR.L., SongQ., CreganP.B. and LiZ. 2014. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes| Genomes| Genetics. 4: 2283–2294.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000345288700024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
- WangX., JiangG.L., GreenM., ScottR.A., SonQ., HytenD.L. and CreganP.B. 2014. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol. Genetics and Genomics 289: 935–949.https://doi.org/10.1007/s00438-014-0865-x
- WangD., ShiJ., CarlsonS., CreganP., WardR. and DiersB. 2003. A low-cost, high throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci. 43: 1828–1832. doi:10.2135/cropsci2003.1828
- WarringtonC.V., Abdel-HaleemH., HytenD.L., CreganP.B., OrfJ.H., KillamA.S. et al. 2015. QTL for seed protein and amino acids in the Benning × Danbackkong soybean population. Theor. Appl. Genet. 128: 839–850.https://doi.org/10.1007/s00122-015-2474-4
- WilcoxJ.R. and CavinsJ.F. 1995. Backcrossing high seed protein to a soybean cultivar. Crop Sci. 35: 1036–1041. doi:10.2135/cropsci1995.0011183X003500040019x
- WilcoxJ.R. and ShiblesR.M. 2001. Interrelationships among seed quality attributes in soybean. Crop Sci. 41: 11–14. doi:10.2135/cropsci2001.41111x
- WilsonR.F. 2004. Seed composition. In: H.R. Boerma, J.E. Specht, editors, Soybeans: Improvement, production, and uses. 3rd ed. Agron. Monogr. 16. ASA, CSSA, and SSSA, Madison, WI.
- WilsonR.F. 2008. Soybean: Market driven research needs. In: G. Stacey, editor, Genetics and genomics of soybean. 2nd ed. Springer, New York. p. 3–14. doi:10.1007/978-0-387-72299-3_1