Journal list menu
Field-Scale Electrical Conductivity Mapping for Delineating Soil Condition
Corresponding Author
Cinthia K. Johnson
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Corresponding author ([email protected])Search for more papers by this authorBrian J. Wienhold
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Search for more papers by this authorKent M. Eskridge
Univ. of Nebraska, 103 Miller Hall, Lincoln, NE, 68583
Search for more papers by this authorJohn F. Shanahan
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Search for more papers by this authorCorresponding Author
Cinthia K. Johnson
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Corresponding author ([email protected])Search for more papers by this authorBrian J. Wienhold
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Search for more papers by this authorKent M. Eskridge
Univ. of Nebraska, 103 Miller Hall, Lincoln, NE, 68583
Search for more papers by this authorJohn F. Shanahan
USDA-ARS, 120 Keim Hall, Lincoln, NE, 68583-0934
Search for more papers by this authorThe USDA-ARS, Northern Plains Area is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Journal Series No. 13291.
Abstract
Traditional sampling methods are inadequate for assessing the interrelated physical, chemical, and biological soil properties responsible for variations in agronomic yield and ecological potentials across a landscape. Recent advances in computers, global positioning systems, and large-scale sensors offer new opportunities for mapping heterogeneous patterns in soil condition. We evaluated field-scale apparent electrical conductivity (ECa) mapping for delineating soil properties correlated with productivity and ecological properties. A contiguous section of farmland (250 ha), managed as eight fields in a no-till winter wheat (Triticum aestivum L.)–corn (Zea mays L.)–millet (Panicum miliaceum L.)–fallow rotation, was ECa mapped (≈0- to 30-cm depth). A geo-referenced soil-sampling scheme separated each field into four ECa classes that were sampled (0- to 7.5- and 7.5- to 30-cm depths) in triplicate. Soil physical parameters (bulk density, moisture content, and percentage clay), chemical parameters (total and particulate organic matter [POM], total C and N, extractable P, laboratory-measured electrical conductivity [EC1:1], and pH), biological parameters (microbial biomass C [MBC] and N [MBN], and potentially mineralizable N), and surface residue mass were significantly different among ECa classes (P ≤ 0.06) at one or both depths (0–7.5 and 0–30 cm). Bulk density, percentage clay, EC1:1, and pH were positively correlated with ECa; all other soil parameters and surface residue mass were negatively correlated. Field-scale ECa classification delimits distinct zones of soil condition, providing an effective basis for soil sampling. Potential uses include assessing temporal impacts of management on soil condition and managing spatial variation in soil-condition and yield-potential through precision agriculture and site-specific management.
References
- 1Bray, R.H.Determination of total, organic, and available forms of phosphorus in soils. Soil Sci.1945 59 3945https://doi.org/10.1097/00010694-194501000-00006http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1945UU11800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Bauer, A.Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J.1994 58 185193https://doi.org/10.2136/sssaj1994.03615995005800010027xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MW42200028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Cambardella, C.A., A.M. Gajda, J.W. Doran, B.J. Wienhold, and T.A. Kettler. 2001. Estimation of particulate and total organic matter by weight loss on ignition. p. 349–359. In R. Lal et al. (ed.) Assessment methods for soil carbon. CRC Press, Boca Raton, FL.
- 4Chen, F.Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci. Soc. Am. J.2000 64 746753https://doi.org/10.2136/sssaj2000.642746xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089446200042&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Cook, C.W., and J. Stubbendieck. 1986. Range research. Soc. For Range Manage. Denver, CO.
- 6Dolittle, J.Reconnaissance soil mapping of a small watershed using electromagnetic induction and global positioning system techniques. Soil Surv. Horiz.1995 36 8694
- 7Doran, J.W., and T.B. Parkin. 1996. Quantitative indicators of soil quality: a minimum data set. p. 25–38. In J.W. Doran and A.J. Jones (ed.) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI.
10.2136/sssaspecpub49.c2 Google Scholar
- 8Eigenberg, R.A.Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Special issue on soil health as an indicator of sustainable management. Agric. Ecosyst. Environ. 2002(in press)
- 9 ERDAS. 1997. ERDAS Field Guide. p. 225–232. ERDAS, Inc., Atlanta, GA.
- 10Francis, D.D., and J.S. Schepers. 1997. Selective soil sampling for site-specific nutrient management. p. 119–126. In J.V. Stafford (ed.) Precision agriculture—′97. Proc. Eur. Conf. on Precision Agriculture, 1st, Warwick University Conference Centre. 7–10 Sept. 1997. BIOS Scientific Publishers Ltd., Oxford, UK.
- 11Fritz, R.M., D.D. Malo, T.E. Schumacher, D.E. Clay, and C.G. Carlson. 1999. Field comparison of two soil electrical conductivity measurement systems. p. 1211–1217. In Int. Conf. on Precision Agriculture, 4th, St. Paul, MN. 19–22 June. ASA, CSSA, and SSSA, Madison, WI.
- 12Gardner, J.C., and S.A. Clancy. 1996. Impact of farming practices on soil quality in North Dakota. p. 337–343. In J.W. Doran and A.J. Jones (ed.) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI.
- 13Islam, K.R.Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biol. Fert. Soils.1998 27 408416https://doi.org/10.1007/s003740050451
- 14Jansson, S.L., and J. Persson. 1982. Mineralization and immobilization of soil nitrogen. p. 229–252. In F.J. Stevenson (ed.) Nitrogen in agricultural soils. Agron. Monogr. 22. ASA, CSSA, and SSSA, Madison, WI.
10.2134/agronmonogr22.c6 Google Scholar
- 15Jaynes, D.B. 1996. Improved soil mapping using electromagnetic induction surveys. p. 169–179. In P.C. Robert et al. (ed.) Proc. Int. Conf. on Precision Agriculture, 3rd, Minneapolis, MN. 23–26 June 1996. ASA, CSSA, and SSSA, Madison, WI.
- 16Jaynes, D.B., T.S. Colvin, and J. Ambuel. 1995. Yield mapping by electromagnetic induction. p. 383–394. In P.C. Robert et al. (ed.) Proc. of site-specific management for agricultural systems, 2nd, Minneapolis, MN. 27–30 Mar. 1994. University of Minnesota Extension Service, Minneapolis, MN.
10.2134/1995.site-specificmanagement.c26 Google Scholar
- 17Kachanoski, R.G.Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods. Can. J. Soil Sci.1988 68 715722https://doi.org/10.4141/cjss88-069http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988R230600007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Keeney, D.R. 1982. Recommended biological index-ammonium-nitrogen production under waterlogged conditions. p. 727–728. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. no. 9. ASA and SSSA, Madison, WI.
- 19Kettler, T.A., J.W. Doran, and T.L. Gilbert. A simplified method for soil particle size determination to accompany soil quality analyses. Soil Sci. Soc. Am. J. 65: 849–852.
- 20Khakural, B.R.Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape. Commun. Soil Sci. Plant Anal.1998 29 20552065https://doi.org/10.1080/00103629809370093http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000075685600057&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Kitchen, N.R.Soil electrical conductivity as a crop productivity measure for claypan soils. J. Prod. Agric.1999 12 607617
- 22Lark, R.M. 1997. Variation in soil conditions and crop performance. p. 127–135. In J.V. Stafford (ed.) Precision agriculture—′97. Proc. Eur. Conf. on Precision Agriculture, 1st, Warwick University Conference Centre. 7–10 Sept. 1997. BIOS Scientific Publishers Ltd., Oxford, UK.
- 23Lesch, S.M.Mapping soil salinity using calibrated electromagnetic measurements. Soil Sci. Soc. Am. J.1992 56 540548https://doi.org/10.2136/sssaj1992.03615995005600020031xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HR73100031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24McBride, R.A.Estimating forest soil quality from terrain measurements of apparent electrical conductivity. Soil Sci. Soc. Am. J.1990 54 290293https://doi.org/10.2136/sssaj1990.03615995005400010047xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990CR27500050&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 25McNeill, J.D. 1980. Electrical conductivity of soils and rocks. Tech. note TN-5. Geonics Ltd., Mississauga, ON, Canada.
- 26Olson, G.L., B.G. McQuaid, K.N. Easterling, and J.M. Scheyer. 1996. Quantifying soil condition and productivity in Nebraska. p. 357–369. In J.W. Doran and A.J. Jones (ed.) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI.
- 27Olson, R.A. 1984. Nitrogen use in dryland farming under semiarid conditions. p. 335–347. In R.D. Hauck (ed.) Nitrogen in crop production. ASA, CSSA, and SSSA, Madison, WI.
- 28Patriquin, D.G.On-farm measurements of pH, electrical conductivity and nitrate in soil extracts for monitoring coupling and decoupling of nutrient cycles. Biol. Agric. Hortic.1993 9 231272http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993KZ93400004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Rhoades, J.D.Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci. Soc. Am. J.1989 53 433439https://doi.org/10.2136/sssaj1989.03615995005300020020xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989U575900020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Rhoades, J.D.Determining salinity in field soils with soil resistance measurements. Soil Sci. Soc. Am. Proc.1971 35 5460https://doi.org/10.2136/sssaj1971.03615995003500010020x
- 31Rhoades, J.D.Determining soil electrical conductivity–depth relations using an inductive electromagnetic soil conductivity meter. Soil Sci. Soc. Am. J.1981 45 255260https://doi.org/10.2136/sssaj1981.03615995004500020006xhttp://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981LR69900006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32 SAS Institute. 1997. SAS/STAT Software: Changes and enhancements through release 6.12. SAS Inst., Cary, NC.
- 33Sheets, K.R.Noninvasive soil water content measurement using electromagnetic induction. Water Res.1995 31 24012409https://doi.org/10.1029/95WR01949http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RX71500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.1029/95WR01949 Google Scholar
- 34Smith, J.L., and J.W. Doran. 1996. Measurement and use of pH and electrical conductivity for soil quality analysis. p. 169–185. In J.W. Doran and A.J. Jones (ed.) Methods for assessing soil quality. SSSA Spec. Publ. 49. SSSA, Madison, WI.
- 35Stevenson, F.J. 1982. Origin and distribution of nitrogen in soil. p. 1–42. In F.J. Stevenson (ed.) Nitrogen in agricultural soils. Agron. Monogr. 22. ASA, CSSA, and SSSA, Madison, WI.
10.2134/agronmonogr22 Google Scholar
- 36Sudduth, K.A., S.T. Drummond, and N.R. Kitchen. 2000. Measuring and interpreting soil electrical conductivity for precision agriculture. p. 1444–1451. In Proc. Int. Conf. Geospatial Information in Agriculture and Forestry, 2nd, Lake Buena Vista, FL. 10–12 June 2000. ERIM International, Inc., Ann Arbor, MI.
- 37Sudduth, K.A., D.F. Hughes, and S.T. Drummond. 1995. Electromagnetic induction sensing as an indicator of productivity on claypan soils. p. 671–681. In P.C. Robert et al. (ed.) Proc. Int. Conf. on Site-Specific Management for Agricultural Systems, 2nd, Minneapolis, MN. 27–30 March 1994. ASA, CSSA, and SSSA, Madison, WI.
- 38Sudduth, K.A., N.R. Kitchen, and S.T. Drummond. 1999. Soil conductivity sensing on claypan soils: comparison of electromagnetic induction and direct methods. p. 979–990. In Proc. Int. Conf. on Precision Agriculture, 4th, St. Paul, MN. 19–22 June. ASA, CSSA, and SSSA, Madison, WI.
- 39Vanden Heuvel, R.M.The promise of precision agriculture. J. Soil Water Conserv.1996 51 3840http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TQ78000014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40 Veris Technologies. 2001. Frequently asked questions about soil electrical conductivity [Online]. [ 2 p.] Available at: http://www.veristech.com [modified 31 May 2001; cited 3 Feb. 2001; verified 25 June 2001]. Veris Technologies, Salina, KS.
- 41Wallace, A.High-precision agriculture is an excellent tool for conservation of natural resources–49. Commun. Soil Sci. Plant Anal.1994 25 4549https://doi.org/10.1080/00103629409369002http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MU18500008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Waring, S.A.Ammonium production in soil under waterlogged conditions as an index on nitrogen availability. Nature1964 201 951952https://doi.org/10.1038/201951a0http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A19648817B00491&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Williams, B.G.The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils. Aust. J. Soil Res.1987 25 2127https://doi.org/10.1071/SR9870021http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987H284100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4