Journal list menu
Free Iron Oxide Determination in Mediterranean Soils using Diffuse Reflectance Spectroscopy
Corresponding Author
N. Richter
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Corresponding author ([email protected]).Search for more papers by this authorT. Jarmer
Transportation and GeoInformation Eng. Unit, Faculty of Civil and Environ. Eng., Technion, Haifa, 32000 Israel
Search for more papers by this authorS. Chabrillat
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Search for more papers by this authorC. Oyonarte
Dep. of Soil Science, Univ. of Almería, 04120 Almería, Spain
Search for more papers by this authorP. Hostert
Institute of Geography, Geomatics Dep., Humboldt-Universität zu Berlin, 10099 Berlin, Germany
Search for more papers by this authorH. Kaufmann
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Search for more papers by this authorCorresponding Author
N. Richter
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Corresponding author ([email protected]).Search for more papers by this authorT. Jarmer
Transportation and GeoInformation Eng. Unit, Faculty of Civil and Environ. Eng., Technion, Haifa, 32000 Israel
Search for more papers by this authorS. Chabrillat
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Search for more papers by this authorC. Oyonarte
Dep. of Soil Science, Univ. of Almería, 04120 Almería, Spain
Search for more papers by this authorP. Hostert
Institute of Geography, Geomatics Dep., Humboldt-Universität zu Berlin, 10099 Berlin, Germany
Search for more papers by this authorH. Kaufmann
Remote Sensing Section, GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
Soil Fe oxides occur in almost all soils and reflect different environmental conditions by the high variability of their mineralogy and concentration. Quantitatively determining this important pedogenic indicator enables diffuse reflectance spectroscopy (DRS) based on material-specific absorption characteristics. This paper presents a methodology that directly links free Fe oxide content (Fed, citrate-dithionite extractable Fe) with the diagnostic Fe absorption band near 900 nm (Fe-NIR). In addition, we investigated the influence of soil texture on the spectral characteristics and prediction accuracy. We showed that the Fe absorption bands of clay-dominated soil samples were, in general, deeper than sand-dominated samples with comparable Fed content. Based on the Fe-NIR absorption depth, we created two texture-dependent Fed prediction models, retrieving the best Fed estimates for the sand calibrated model (R2v = 0.87, rel. MSEv = 13.9%). Due to the high texture variability in sand, silt, and clay fractions of the clay–silt dominated samples, the clay–silt calibrated model produced good predictions (R2v = 0.70, rel. RMSEv = 19.0%). The soil texture appeared to have no significant influence on model stability but did affect the prediction accuracy. Constant Fed contents were over- and underestimated when applying the texture-dependent models to other texture groups. The texture-independent model was stable and performed well (R2v = 0.76, rel. RMSEv = 18.1%). These results are highly relevant to the subsequent spatial assessment of free Fe oxide content as an indicator for soil development from hyperspectral remote sensing data.
References
- 1Aranda, V., and Oyonarte, C. Effect of vegetation with different evolution degree on soil organic matter in a semi-arid environment (Cabo de Gata-Níjar Natural Park, SE Spain). J. Arid Environ. 2005 62 631–647 https://doi.org/10.1016/j.jaridenv.2005.01.019
- 2Arduino, E., Barberis, E., Ajmone Marsan, F., Zanini, E., and Franchini, M. Iron oxides and clay minerals within profiles as indicators of soil age in northern Italy. Geoderma 1986 37 45–55 https://doi.org/10.1016/0016-7061(86)90042-X http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986A409300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 3Backhaus, K., Erichson, B., Plinke, W., and Weiber, R. Multivariate Analysemethoden: Eine anwendungsorientierte Einführung. 6th ed. (In German.) Springer-Verlag, Berlin. 1990
- 4Bahrenberg, G., Giese, E., and Nipper, J. Statistische Methoden in der Geographie. Band 1: Univariate und bivariate Statistik. 4th ed. (In German.) B.G. Teubner, Stuttgart, Leipzig. 1999
- 5Bartholomeus, H., Epema, G., and Schaepman, M. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. Int. J. Appl. Earth Observ. Geoinf. 2007 9 194–203 https://doi.org/10.1016/j.jag.2006.09.001
- 6Baumgardner, M.F., Silva, L.F., Biehl, L.L., and Stoner, E.R. Reflectance properties of soil. Adv. Agron. 1985 38 2–44
- 7Bech, J., Rustullet, J., Garrigo, J., Tobias, F.J., and Martinez, R. The iron content of some red Mediterranean soils from northeast Spain and its pedogenic significance. CATENA 1997 28 211–229 https://doi.org/10.1016/S0341-8162(96)00039-2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WJ10700006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 8Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002 75 173–243 https://doi.org/10.1016/S0065-2113(02)75005-0
- 9Ben-Dor, E., Levin, N., Singer, A., Karnieli, A., Braun, O., and Kidron, G.J. Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor. Geoderma 2006 131 1–21 https://doi.org/10.1016/j.geoderma.2005.02.011 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000235649800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 10Birkeland, P.W. Soils and geomorphology. 3rd ed. Oxford Univ. Press, New York. 1999
- 11Bronstein, I.N., Semendjajew, K.A., Musiol, G., and Mühlig, H. Taschenbuch der Mathematik. 5th ed. (In German.) Verlag Harri-Deutsch, Frankfurt am Main. 2000
- 12Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., and Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006 132 273–290 https://doi.org/10.1016/j.geoderma.2005.04.025 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000237998100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 13Bullard, J.E., and White, K. Quantifying iron oxide coatings on dune sands using spectrometric measurements: An example from the Simpson-Strzelecki Desert, Australia. :. J. Geophys. Res. 2002 107 2125 https://doi.org/10.1029/2001JB000454
10.1029/2001JB000454 Google Scholar
- 14Clark, R.N., and Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984 89 6329–6340 https://doi.org/10.1029/JB089iB07p06329
10.1029/JB089iB07p06329 Google Scholar
- 15Clark, R.N. Spectroscopy of rocks and minerals, and principles of spectroscopy. p. 3–58. A.N. Rencz (ed.) Manual of remote sensing, Remote sensing for the earth sciences, Vol. 3. John Wiley & Sons, New York. 1999
- 16Cornell, R.M., and Schwertmann, U. The iron oxides. VCH Verlagsgesellschaft mbH, Weinheim. 1996
- 17Fernández-Soler, J.M. Volcanics of the Almería Province. p. 58–88. A.E. Mather (ed.) A field guide to the Neogene sedimentary basins of the Almería province, SE Spain. Vol. VII. 1st ed. Blackwell Science, Oxford. 2001
- 18Fontes, M.P.F., and Carvalho, I.A. Jr Color attributes and mineralogical characteristics, evaluated by radiometry, of highly weathered tropical soils. Soil Sci. Soc. Am. J. 2005 69 1162–1172 https://doi.org/10.2136/sssaj2003.0312 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000230760300024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 19Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986 71 151–162
- 20Geerken, R. Informationspotential von spektral hochauflösenden Fernerkundungsdaten für die Identifizierung von Mineralen und Gesteinen: Laborversuche und Anwendungsbeispiele in der Geologie. (In German.) PhD Thesis, Univ. of Karlsruhe, Germany. 1991
- 21Holmgren, G.G.S. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc. 1967 31 210–211 https://doi.org/10.2136/sssaj1967.03615995003100020020x
- 22Hunt, G.R., and Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals. Modern Geol. 1970 1 283–300
- 23Hunt, G.R., Salisbury, J.W., and Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydroxides. Modern Geol. 1971 2 195–205
- 24Jarmer, T., and Schütt, B. Analysis of iron contents in carbonate bedrock by spectroradiometric detection based on experimentally designed substrates. p. 375–382. M. Schaepman, et al. (ed.) Proc. of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland. 1998
- 25Jarmer, T., Lavée, H., Sarah, P., and Hill, J. Using reflectance spectroscopy and Landsat data to assess soil inorganic carbon in the Judean Desert (Israel). A. Röder, and J. Hill (ed.) Advances in remote sensing and geoinformation processing in land degradation assessment. ISPRS Book Series. Taylor & Francis, London (in print). 2009
- 26Klute, A. Methods of soil analysis. Part 1. ASA, CSSA, and SSSA, Madison, WI. 1986
- 27Kosmas, C.S., Curi, N., Bryant, R.B., and Franzmeier, D.P. Characterization of iron oxide minerals by second-derivative visible spectroscopy. Soil Sci. Soc. Am. J. 1984 48 401–405 https://doi.org/10.2136/sssaj1984.03615995004800020036x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1984SP24900036&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 28Malengreau, N., Muller, J.-P., and Calas, G. Fe-speciation in Kaolins: A diffuse reflectance study. Clays Clay Miner. 1994 42 137–147 https://doi.org/10.1346/CCMN.1994.0420204
- 29Malengreau, N., Bedidi, A., Muller, J.P., and Herbillon, A.J. Spectroscopy control of iron oxide dissolution in two ferralitic soils. Eur. J. Soil Sci. 1996 47 13–20 https://doi.org/10.1111/j.1365-2389.1996.tb01367.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UK09900003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Malley, D.F., Martin, P.D., and Ben-Dor, E. Application in analysis of soils. Agron. Monogr. 2004 44 729–785
- 31McBratney, A.B., Minasny, B., and Viscarra Rossel, R. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 2006 136 272–278 https://doi.org/10.1016/j.geoderma.2006.03.051 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000242837500023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 32Morris, R.V., Lauer, H.V., Lawson, C.A., Gibson, E.K. Jr., Nace, G.A., and Stewart, C. Spectral and other physicochemical properties of submicron powders of Hematite (α-Fe2O3), Maghematite (γ-Fe2O3), Magnetite (Fe3O4), Goethite (α-FeOOH), and Lepidocrocite (γ-FeOOH). J. Geophys. Res. 1985 90 3126–3144 https://doi.org/10.1029/JB090iB04p03126
- 33Oyonarte, C., Mingorance, M.D., Durante, P., Piñero, G., and Barahona, E. Indicators of change in the organic matter in arid soils. Sci. Total Environ. 2007 378 133–137 https://doi.org/10.1016/j.scitotenv.2007.01.039 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000246949000027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 34Page, A.L., Miller, R.H., and Keeney, D.R. Methods of soil analysis. Part 2. 2nd ed. ASA, CSSA, and SSSA, Madison, WI. 1982
- 35Palacios-Orueta, A., and Ustin, S.L. Remote sensing of soil properties in the Santa Monica Mountains I. Spectral analysis. Remote Sens. Environ. 1998 65 170–183 https://doi.org/10.1016/S0034-4257(98)00024-8 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000074765100005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Parfitt, R.L., and Childs, C.W. Estimation of forms of Fe and Al: A review, and analysis of contrasting soils by dissolution and Moessbauer methods. Aust. J. Soil Res. 1988 26 121–144 https://doi.org/10.1071/SR9880121 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988N320700010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Paruelo, J.M., Piñeiro, G., Oyonarte, C., Alcaraz, D., Cabello, J., and Escribano, P. Temporal and spatial patterns of ecosystem functioning in protected arid areas in southeastern Spain. Appl. Veg. Sci. 2005 8 93–1012 https://doi.org/10.1111/j.1654-109X.2005.tb00633.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000232547000012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 38 Research SystemsInc. ENVI user's guide. Research Systems, Inc. Boulder, CO. 2002
- 39Scheinost, A.C., and Schwertmann, U. Color identification of iron oxides and hydroxysulfates: Use and limitations. Soil Sci. Soc. Am. J. 1999 63 1463–1471 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000083839800051&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
10.2136/sssaj1999.6351463x Google Scholar
- 40Scheinost, A.C., Chavernas, A., Barrón, V., and Torrent, J. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soil. Clays Clay Miner. 1998 46 528–536 https://doi.org/10.1346/CCMN.1998.0460506
- 41Schwertmann, U. Occurrence and formation of iron oxides in various pedoenvironments. p. 267–308. J.W. Stucki (ed.) Iron in soils and clay minerals. D. Reidel Publishing Company, Munich. 1988
- 42Stoner, E.R., Baumgardner, M.F., Biehl, L.L., and Robinson, B.F. Atlas of soil reflectance properties. Res. Bull. 962. Agric. Exp. Stn. Purdue Univ., West Lafayette, IN. 1980
- 43Torrent, J., Schwertmann, U., and Schulze, D.G. Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma 1980 23 191–208 https://doi.org/10.1016/0016-7061(80)90002-6 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980JZ50200002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 44Torrent, J., Schwertmann, U., Fechter, H., and Alferez, F. Quantitative relationships between soil color and hematite content. Soil Sci. 1983 136 354–358 https://doi.org/10.1097/00010694-198312000-00004 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983RX41700004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 45Udelhoven, T., Emmerling, C., and Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003 251 319–329 https://doi.org/10.1023/A:1023008322682 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000182007100013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 46van der Meer, F. Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sens. Rev. 1995 13 67–94
- 47Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., and Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006 131 59–75 https://doi.org/10.1016/j.geoderma.2005.03.007 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000235649800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4