Journal list menu
Unweathered Wood Biochar Impact on Nitrous Oxide Emissions from a Bovine-Urine-Amended Pasture Soil
Corresponding Author
T.J. Clough
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Corresponding author ([email protected]).Search for more papers by this authorJ.E. Bertram
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorJ.L. Ray
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorL.M. Condron
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorM. O'Callaghan
AgResearch, Private Bag 4749, Lincoln, New Zealand
Search for more papers by this authorR.R. Sherlock
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorN.S. Wells
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorCorresponding Author
T.J. Clough
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Corresponding author ([email protected]).Search for more papers by this authorJ.E. Bertram
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorJ.L. Ray
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorL.M. Condron
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorM. O'Callaghan
AgResearch, Private Bag 4749, Lincoln, New Zealand
Search for more papers by this authorR.R. Sherlock
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorN.S. Wells
Soil and Physical Sciences Dep., Faculty of Agricultural and Life Sciences, Lincoln Univ., PO Box 84, Lincoln, 7647 New Zealand
Search for more papers by this authorAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
Abstract
Low-temperature pyrolysis of biomass produces a product known as biochar The incorporation of this material into the soil has been advocated as a C sequestration method. Biochar also has the potential to influence the soil N cycle by altering nitrification rates and by adsorbing or NH3 Biochar can be incorporated into the soil during renovation of intensively managed pasture soils. These managed pastures are a significant source of N2O, a greenhouse gas, produced in ruminant urine patches. We hypothesized that biochar effects on the N cycle could reduce the soil inorganic-N pool available for N2O-producing mechanisms. A laboratory study was performed to examine the effect of biochar incorporation into soil (20 Mg ha−1) on N2O-N and NH3–N fluxes, and inorganic-N transformations, following the application of bovine urine (760 kg N ha−1). Treatments included controls (soil only and soil plus biochar), and two urine treatments (soil plus urine and soil plus biochar plus urine). Fluxes of N2O from the biochar plus urine treatment were generally higher than from urine alone during the first 30 d, but after 50 d there was no significant difference (P = 0.11) in terms of cumulative N2O-N emitted as a percentage of the urine N applied during the 53-d period; however, NH3–N fluxes were enhanced by approximately 3% of the N applied in the biochar plus urine treatment compared with the urine-only treatment after 17 d. Soil inorganic-N pools differed between treatments, with higher
concentrations in the presence of biochar, indicative of lower rates of nitrification. The inorganic-N pool available for N2O-producing mechanisms was not reduced, however, by adding biochar.
References
- 1Asada, T., Ohkubo, T., Kawata, K., and Oikawa, K. Ammonia adsorption on bamboo charcoal with acid treatment. J. Health Sci. 2006 52 585–589 https://doi.org/10.1248/jhs.52.585 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000241546200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 2Beaton, J.D., Peterson, H.B., and Bauer, N. Some aspects of phosphate adsorption by charcoal. Soil Sci. Soc. Am. Proc. 1960 24 340–346 https://doi.org/10.2136/sssaj1960.03615995002400050012x
- 3Blakemore, L.C., Searle, P.L., and Daly, B.K. Methods for chemical analysis of soils. Manaaki-Whenua Press, Lincoln, NZ. 1987
- 4Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007 45 629–634 https://doi.org/10.1071/SR07109 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000251427900008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 5Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008 46 437–444 https://doi.org/10.1071/SR08036 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000258823800004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 6Crutzen, P.J. The influence of nitrogen oxides on the atmospheric ozone content. Q. J. R. Meteorol. Soc. 1970 96 320–325 https://doi.org/10.1002/qj.49709640815 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1970G322300014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 7Czimczik, C.I., and Masiello, C.A. Controls on black carbon storage in soils. Global Biogeochem. Cycles 21: GB3005, doi:. 2007 https://doi.org/10.1029/2006GB002798
- 8De Luca, T.H., MacKenzie, M.D., Gundale, M.J., and Holben, W.E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 2006 70 448–453 https://doi.org/10.2136/sssaj2005.0096 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000236009100015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 9Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., and Fahey, D.W. et al Changes in atmospheric constituents and in radiative forcing. p. 129–234. S. Solomon et al. (ed.) Climate change 2007: The Physical Basis. Cambridge Univ. Press, Cambridge, UK. 2007
- 10Ghani, A., Dexter, M., and Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003 35 1231–1243 https://doi.org/10.1016/S0038-0717(03)00186-X http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184666300010&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 11Glaser, B., Lehmann, J., and Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biol. Fertil. Soils 2002 35 219–230 https://doi.org/10.1007/s00374-002-0466-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176523500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 12Haynes, R.J., and Williams, P.H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv. Agron. 1993 49 119–199 https://doi.org/10.1016/S0065-2113(08)60794-4
- 13Hewitt, A.E. New Zealand soil classification. 2nd ed. Manaaki Whenua Press, Lincoln, NZ. 1998
- 14Jenkinson, D.S., Brookes, P.C., and Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004 36 5–7 https://doi.org/10.1016/j.soilbio.2003.10.002 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000188587600002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 15Kim, E.J., Oh, J.E., and Chang, Y.S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 2003 311 177–189 https://doi.org/10.1016/S0048-9697(03)00095-0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000184091300013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 16Kurose, K., Okamura, D., and Yatagai, M. Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species. Flavour Fragrance J. 2007 22 10–20 https://doi.org/10.1002/ffj.1609 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243943600002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 17Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007 5 381–387 https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000249192100020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 18Lehmann, J., Czimczik, C.I., Laird, D., and Saran, S. Stability of biochar in the soil. J. Lehmann, and S. Joseph (ed.) Biochar for environmental management: Science and technology. Earthscan, London. 2009
- 19Lehmann, J., Gaunt, J., and Rondon, M. Bio-char sequestration in terrestrial ecosystems: A review. Mitig. Adapt. Strategies Global Change 2006 1 403–427
- 20Lehmann, J., Lan, Z., and Hyland, C. Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environ. Sci. Technol. 2005 39 6672–6680 https://doi.org/10.1021/es047997g http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000231723800054&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 21Lehmann, M.F., Bernasconi, S.M., Barbieri, A., and McKenzie, J.A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 2002 66 3573–3584 https://doi.org/10.1016/S0016-7037(02)00968-7 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000178730000005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 22Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J., and Neves, E.G. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006 70 1719–1730 https://doi.org/10.2136/sssaj2005.0383 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000240666800030&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 23McCarty, G.W. Modes of action of nitrification inhibitors. Biol. Fertil. Soils 1999 29 1–9 https://doi.org/10.1007/s003740050518 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079895100001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 24 Minitab Inc. Minitab statistical software, release 13.1. Minitab Inc., State College, PA. 2000
- 25Mizuta, K., Matsumoto, T., Hatate, Y., Nishihara, K., and Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004 95 255–257 https://doi.org/10.1016/j.biortech.2004.02.015 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000223819100003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 26Mosier, A., and Mack, L. Gas chromatographic system for precise, rapid analysis of nitrous oxide. Soil Sci. Soc. Am. J. 1980 44 1121–1123 https://doi.org/10.2136/sssaj1980.03615995004400050048x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1980KS00500048&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 27Nerome, M., Toyota, K., Islam, T.M.D., Nishijima, T., Matsuoka, T., Sato, K., and Yamaguchi, Y. Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorg. 2005 59 9–14
- 28Preston, C.M., and Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006 3 397–420 https://doi.org/10.5194/bg-3-397-2006 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000243785300002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 29Rondon, M.A., Lehmann, J., Ramírez, J., and Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007 43 699–708 https://doi.org/10.1007/s00374-006-0152-z http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000247999500009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 30Rondon, M., Ramirez, J.A., and Lehmann, J. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. p. 208. Proc. USDA Symp. on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, 3rd, Baltimore, MD. 21–24 Mar. 2005. Univ. of Delaware, Baltimore. 2005
- 31Sandor, J.A., Winkler-Prins, A.M.G.A., Barrera-Bassols, N., and Zinck, J.A. The heritage of soil knowledge among the world's cultures. p. 43–84. B.P. Warkentin (ed.) Footprints in the soil: People and ideas in soil history. Elsevier, Amsterdam. 2006
- 32Schmidt, M.W.I., and Masiello, C.A. Interdisciplinary intercomparison of black carbon analysis in soil and sediment. Eos Trans. Am. Geophys. Union 88 (35), doi:. 2007 https://doi.org/10.1029/2007EO350006
- 33Sherlock, R.R., and Goh, K.M. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture. I. Field experiments. Fert. Res. 1984 5 181–195 https://doi.org/10.1007/BF01052715
- 34Simpson, R.F., and McQuilkin, R.M. Identification of volatiles from felled Pinus radiata and the electroantennograms they elicit from Sirex noctillo. Entomol. Exp. Appl. 1976 19 205–213 https://doi.org/10.1007/BF00302055 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1976BY46900002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 35Smith, R.V., Burns, L.C., Doyle, R.M., Lennox, S.D., Kelso, B.H.L., Foy, R.H., and Stevens, R.J. Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation. J. Environ. Qual. 1997 26 1049–1055 https://doi.org/10.2134/jeq1997.2641049x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XN53100019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 36Steiner, C., Das, K.C., Garcia, M., Forster, B., and Zech, W. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008 51 359–366 https://doi.org/10.1016/j.pedobi.2007.08.002 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000255499300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 37Stevens, R.J., and Laughlin, R.J. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr. Cycling Agroecosyst. 1998 52 131–139 https://doi.org/10.1023/A:1009715807023
- 38Tans, P. Recent monthly CO2 at Mauna Loa. Available at (accessed 1 May 2009; verified 13 Feb. 2010) Natl. Oceanic Atmos. Admin. Earth Syst. Res. Lab., Boulder, CO. 2009
- 39Vadivelu, V.M., Keller, J., and Yuan, Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci. Technol. 2007 56 89–97 https://doi.org/10.2166/wst.2007.612 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000253383100011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 40Vance, E.D., Brookes, P.C., and Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987 19 703–707 https://doi.org/10.1016/0038-0717(87)90052-6 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1987K675600009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 41Villaverde, S., García-Encina, P.A., and Fdz-Polanco, F. Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Res. 1997 31 1180–1186 https://doi.org/10.1016/S0043-1354(96)00376-4 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WV97000028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 42Ward, B.B., Courtney, K.J., and Langenheim, J.H. Inhibition of Nitrosomonas europea by monoterpenes from coastal redwood (Sequoia sempervirens) in whole-cell studies. J. Chem. Ecol. 1997 23 2583–2598 https://doi.org/10.1023/B:JOEC.0000006668.48855.b7 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YJ46600013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 43Wardle, D.A., Nilsson, M., and Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320: 629. 2008
- 44Wrage, N., Velthof, G.L., van Beusichem, M.L., and Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001 33 1723–1732 https://doi.org/10.1016/S0038-0717(01)00096-7 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000171415500015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4
- 45Yanai, Y., Toyota, K., and Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007 53 181–188 https://doi.org/10.1111/j.1747-0765.2007.00123.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000244596200008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4